VulcanoLE/headers/sol/sol.hpp

26675 lines
871 KiB
C++

// The MIT License (MIT)
// Copyright (c) 2013-2020 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// This file was generated with a script.
// Generated 2020-10-03 21:34:24.496436 UTC
// This header was generated with sol v3.2.1 (revision 48eea7b5)
// https://github.com/ThePhD/sol2
#ifndef SOL_SINGLE_INCLUDE_HPP
#define SOL_SINGLE_INCLUDE_HPP
// beginning of sol/sol.hpp
#ifndef SOL_HPP
#define SOL_HPP
// beginning of sol/version.hpp
#include <sol/config.hpp>
#include <cstdint>
#define SOL_VERSION_MAJOR 3
#define SOL_VERSION_MINOR 5
#define SOL_VERSION_PATCH 0
#define SOL_VERSION_STRING "3.5.0"
#define SOL_VERSION ((SOL_VERSION_MAJOR * 100000) + (SOL_VERSION_MINOR * 100) + (SOL_VERSION_PATCH))
#define SOL_IS_ON(OP_SYMBOL) ((3 OP_SYMBOL 3) != 0)
#define SOL_IS_OFF(OP_SYMBOL) ((3 OP_SYMBOL 3) == 0)
#define SOL_IS_DEFAULT_ON(OP_SYMBOL) ((3 OP_SYMBOL 3) > 3)
#define SOL_IS_DEFAULT_OFF(OP_SYMBOL) ((3 OP_SYMBOL 3 OP_SYMBOL 3) < 0)
#define SOL_ON |
#define SOL_OFF ^
#define SOL_DEFAULT_ON +
#define SOL_DEFAULT_OFF -
#if defined(_MSC_VER)
#define SOL_COMPILER_CLANG_I_ SOL_OFF
#define SOL_COMPILER_GCC_I_ SOL_OFF
#define SOL_COMPILER_EDG_I_ SOL_OFF
#define SOL_COMPILER_VCXX_I_ SOL_ON
#elif defined(__clang__)
#define SOL_COMPILER_CLANG_I_ SOL_ON
#define SOL_COMPILER_GCC_I_ SOL_OFF
#define SOL_COMPILER_EDG_I_ SOL_OFF
#define SOL_COMPILER_VCXX_I_ SOL_OFF
#elif defined(__GNUC__)
#define SOL_COMPILER_CLANG_I_ SOL_OFF
#define SOL_COMPILER_GCC_I_ SOL_ON
#define SOL_COMPILER_EDG_I_ SOL_OFF
#define SOL_COMPILER_VCXX_I_ SOL_OFF
#else
#define SOL_COMPILER_CLANG_I_ SOL_OFF
#define SOL_COMPILER_GCC_I_ SOL_OFF
#define SOL_COMPILER_EDG_I_ SOL_OFF
#define SOL_COMPILER_VCXX_I_ SOL_OFF
#endif
#if defined(__MINGW32__)
#define SOL_COMPILER_FRONTEND_MINGW_I_ SOL_ON
#else
#define SOL_COMPILER_FRONTEND_MINGW_I_ SOL_OFF
#endif
#if SIZE_MAX <= 0xFFFFULL
#define SOL_PLATFORM_X16_I_ SOL_ON
#define SOL_PLATFORM_X86_I_ SOL_OFF
#define SOL_PLATFORM_X64_I_ SOL_OFF
#elif SIZE_MAX <= 0xFFFFFFFFULL
#define SOL_PLATFORM_X16_I_ SOL_OFF
#define SOL_PLATFORM_X86_I_ SOL_ON
#define SOL_PLATFORM_X64_I_ SOL_OFF
#else
#define SOL_PLATFORM_X16_I_ SOL_OFF
#define SOL_PLATFORM_X86_I_ SOL_OFF
#define SOL_PLATFORM_X64_I_ SOL_ON
#endif
#define SOL_PLATFORM_ARM32_I_ SOL_OFF
#define SOL_PLATFORM_ARM64_I_ SOL_OFF
#if defined(_WIN32)
#define SOL_PLATFORM_WINDOWS_I_ SOL_ON
#else
#define SOL_PLATFORM_WINDOWS_I_ SOL_OFF
#endif
#if defined(__APPLE__)
#define SOL_PLATFORM_APPLE_I_ SOL_ON
#else
#define SOL_PLATFORM_APPLE_I_ SOL_OFF
#endif
#if defined(__unix__)
#define SOL_PLATFORM_UNIXLIKE_I_ SOL_ON
#else
#define SOL_PLATFORM_UNIXLIKE_I_ SOL_OFF
#endif
#if defined(__linux__)
#define SOL_PLATFORM_LINUXLIKE_I_ SOL_ON
#else
#define SOL_PLATFORM_LINUXLIKE_I_ SOL_OFF
#endif
#define SOL_PLATFORM_APPLE_IPHONE_I_ SOL_OFF
#define SOL_PLATFORM_BSDLIKE_I_ SOL_OFF
#if defined(SOL_IN_DEBUG_DETECTED)
#if SOL_IN_DEBUG_DETECTED != 0
#define SOL_DEBUG_BUILD_I_ SOL_ON
#else
#define SOL_DEBUG_BUILD_I_ SOL_OFF
#endif
#elif !defined(NDEBUG)
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_) && defined(_DEBUG)
#define SOL_DEBUG_BUILD_I_ SOL_ON
#elif (SOL_IS_ON(SOL_COMPILER_CLANG_I_) || SOL_IS_ON(SOL_COMPILER_GCC_I_)) && !defined(__OPTIMIZE__)
#define SOL_DEBUG_BUILD_I_ SOL_ON
#else
#define SOL_DEBUG_BUILD_I_ SOL_OFF
#endif
#else
#define SOL_DEBUG_BUILD_I_ SOL_DEFAULT_OFF
#endif // We are in a debug mode of some sort
#if defined(SOL_NO_EXCEPTIONS)
#if (SOL_NO_EXCEPTIONS != 0)
#define SOL_EXCEPTIONS_I_ SOL_OFF
#else
#define SOL_EXCEPTIONS_I_ SOL_ON
#endif
#elif SOL_IS_ON(SOL_COMPILER_VCXX_I_)
#if !defined(_CPPUNWIND)
#define SOL_EXCEPTIONS_I_ SOL_OFF
#else
#define SOL_EXCEPTIONS_I_ SOL_ON
#endif
#elif SOL_IS_ON(SOL_COMPILER_CLANG_I_) || SOL_IS_ON(SOL_COMPILER_GCC_I_)
#if !defined(__EXCEPTIONS)
#define SOL_EXCEPTIONS_I_ SOL_OFF
#else
#define SOL_EXCEPTIONS_I_ SOL_ON
#endif
#else
#define SOL_EXCEPTIONS_I_ SOL_DEFAULT_ON
#endif
#if defined(SOL_NO_RTTI)
#if (SOL_NO_RTTI != 0)
#define SOL_RTTI_I_ SOL_OFF
#else
#define SOL_RTTI_I_ SOL_ON
#endif
#elif SOL_IS_ON(SOL_COMPILER_VCXX_I_)
#if !defined(_CPPRTTI)
#define SOL_RTTI_I_ SOL_OFF
#else
#define SOL_RTTI_I_ SOL_ON
#endif
#elif SOL_IS_ON(SOL_COMPILER_CLANG_I_) || SOL_IS_ON(SOL_COMPILER_GCC_I_)
#if !defined(__GXX_RTTI)
#define SOL_RTTI_I_ SOL_OFF
#else
#define SOL_RTTI_I_ SOL_ON
#endif
#else
#define SOL_RTTI_I_ SOL_DEFAULT_ON
#endif
#if defined(SOL_NO_THREAD_LOCAL) && (SOL_NO_THREAD_LOCAL != 0)
#define SOL_USE_THREAD_LOCAL_I_ SOL_OFF
#else
#define SOL_USE_THREAD_LOCAL_I_ SOL_DEFAULT_ON
#endif // thread_local keyword is bjorked on some platforms
#if defined(SOL_ALL_SAFETIES_ON) && (SOL_ALL_SAFETIES_ON != 0)
#define SOL_ALL_SAFETIES_ON_I_ SOL_ON
#else
#define SOL_ALL_SAFETIES_ON_I_ SOL_DEFAULT_OFF
#endif
#if defined(SOL_SAFE_GETTER) && (SOL_SAFE_GETTER != 0)
#define SOL_SAFE_GETTER_I_ SOL_ON
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_SAFE_GETTER_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_SAFE_GETTER_I_ SOL_DEFAULT_ON
#else
#define SOL_SAFE_GETTER_I_ SOL_DEFAULT_OFF
#endif
#endif
#if defined(SOL_SAFE_USERTYPE) && (SOL_SAFE_USERTYPE != 0)
#define SOL_SAFE_USERTYPE_I_ SOL_ON
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_SAFE_USERTYPE_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_SAFE_USERTYPE_I_ SOL_DEFAULT_ON
#else
#define SOL_SAFE_USERTYPE_I_ SOL_DEFAULT_OFF
#endif
#endif
#if defined(SOL_SAFE_REFERENCES) && (SOL_SAFE_REFERENCES != 0)
#define SOL_SAFE_REFERENCES_I_ SOL_ON
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_SAFE_REFERENCES_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_SAFE_REFERENCES_I_ SOL_DEFAULT_ON
#else
#define SOL_SAFE_REFERENCES_I_ SOL_DEFAULT_OFF
#endif
#endif
#if (defined(SOL_SAFE_FUNCTIONS) && (SOL_SAFE_FUNCTIONS != 0)) \
|| (defined(SOL_SAFE_FUNCTION_OBJECTS) && (SOL_SAFE_FUNCTION_OBJECTS != 0))
#define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_ON
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_DEFAULT_ON
#else
#define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_DEFAULT_OFF
#endif
#endif
#if defined(SOL_SAFE_FUNCTION_CALLS) && (SOL_SAFE_FUNCTION_CALLS != 0)
#define SOL_SAFE_FUNCTION_CALLS_I_ SOL_ON
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_SAFE_FUNCTION_CALLS_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_SAFE_FUNCTION_CALLS_I_ SOL_DEFAULT_ON
#else
#define SOL_SAFE_FUNCTION_CALLS_I_ SOL_DEFAULT_OFF
#endif
#endif
#if defined(SOL_SAFE_PROXIES) && (SOL_SAFE_PROXIES != 0)
#define SOL_SAFE_PROXIES_I_ SOL_ON
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_SAFE_PROXIES_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_SAFE_PROXIES_I_ SOL_DEFAULT_ON
#else
#define SOL_SAFE_PROXIES_I_ SOL_DEFAULT_OFF
#endif
#endif
#if defined(SOL_SAFE_NUMERICS) && (SOL_SAFE_NUMERICS != 0)
#define SOL_SAFE_NUMERICS_I_ SOL_ON
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_SAFE_NUMERICS_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_SAFE_NUMERICS_I_ SOL_DEFAULT_ON
#else
#define SOL_SAFE_NUMERICS_I_ SOL_DEFAULT_OFF
#endif
#endif
#if defined(SOL_SAFE_STACK_CHECK) && (SOL_SAFE_STACK_CHECK != 0)
#define SOL_SAFE_STACK_CHECK_I_ SOL_ON
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_SAFE_STACK_CHECK_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_SAFE_STACK_CHECK_I_ SOL_DEFAULT_ON
#else
#define SOL_SAFE_STACK_CHECK_I_ SOL_DEFAULT_OFF
#endif
#endif
#if (defined(SOL_NO_CHECK_NUMBER_PRECISION) && (SOL_NO_CHECK_NUMBER_PRECISION != 0)) \
|| (defined(SOL_NO_CHECKING_NUMBER_PRECISION) && (SOL_NO_CHECKING_NUMBER_PRECISION != 0))
#define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_OFF
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_ON
#elif SOL_IS_ON(SOL_SAFE_NUMERICS_I_)
#define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_DEFAULT_ON
#else
#define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_DEFAULT_OFF
#endif
#endif
#if defined(SOL_STRINGS_ARE_NUMBERS)
#if (SOL_STRINGS_ARE_NUMBERS != 0)
#define SOL_STRINGS_ARE_NUMBERS_I_ SOL_ON
#else
#define SOL_STRINGS_ARE_NUMBERS_I_ SOL_OFF
#endif
#else
#define SOL_STRINGS_ARE_NUMBERS_I_ SOL_DEFAULT_OFF
#endif
#if defined(SOL_ENABLE_INTEROP) && (SOL_ENABLE_INTEROP != 0) \
|| defined(SOL_USE_INTEROP) && (SOL_USE_INTEROP != 0)
#define SOL_USE_INTEROP_I_ SOL_ON
#else
#define SOL_USE_INTEROP_I_ SOL_DEFAULT_OFF
#endif
#if defined(SOL_NO_NIL)
#if (SOL_NO_NIL != 0)
#define SOL_NIL_I_ SOL_OFF
#else
#define SOL_NIL_I_ SOL_ON
#endif
#elif defined(__MAC_OS_X_VERSION_MAX_ALLOWED) || defined(__OBJC__) || defined(nil)
#define SOL_NIL_I_ SOL_DEFAULT_OFF
#else
#define SOL_NIL_I_ SOL_DEFAULT_ON
#endif
#if defined(SOL_USERTYPE_TYPE_BINDING_INFO)
#if (SOL_USERTYPE_TYPE_BINDING_INFO != 0)
#define SOL_USERTYPE_TYPE_BINDING_INFO_I_ SOL_ON
#else
#define SOL_USERTYPE_TYPE_BINDING_INFO_I_ SOL_OFF
#endif
#else
#define SOL_USERTYPE_TYPE_BINDING_INFO_I_ SOL_DEFAULT_ON
#endif // We should generate a my_type.__type table with lots of class information for usertypes
#if defined(SOL_AUTOMAGICAL_TYPES_BY_DEFAULT)
#if (SOL_AUTOMAGICAL_TYPES_BY_DEFAULT != 0)
#define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_ON
#else
#define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_OFF
#endif
#elif defined(SOL_DEFAULT_AUTOMAGICAL_USERTYPES)
#if (SOL_DEFAULT_AUTOMAGICAL_USERTYPES != 0)
#define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_ON
#else
#define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_OFF
#endif
#else
#define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_DEFAULT_ON
#endif // make is_automagical on/off by default
#if defined(SOL_STD_VARIANT)
#if (SOL_STD_VARIANT != 0)
#define SOL_STD_VARIANT_I_ SOL_ON
#else
#define SOL_STD_VARIANT_I_ SOL_OFF
#endif
#else
#if SOL_IS_ON(SOL_COMPILER_CLANG_I_) && SOL_IS_ON(SOL_PLATFORM_APPLE_I_)
#if defined(__has_include)
#if __has_include(<variant>)
#define SOL_STD_VARIANT_I_ SOL_ON
#else
#define SOL_STD_VARIANT_I_ SOL_OFF
#endif
#else
#define SOL_STD_VARIANT_I_ SOL_OFF
#endif
#else
#define SOL_STD_VARIANT_I_ SOL_DEFAULT_ON
#endif
#endif // make is_automagical on/off by default
#if defined(SOL_NOEXCEPT_FUNCTION_TYPE)
#if (SOL_NOEXCEPT_FUNCTION_TYPE != 0)
#define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_ON
#else
#define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_OFF
#endif
#else
#if defined(__cpp_noexcept_function_type)
#define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_ON
#elif SOL_IS_ON(SOL_COMPILER_VCXX_I_) && (defined(_MSVC_LANG) && (_MSVC_LANG < 201403L))
// There is a bug in the VC++ compiler??
// on /std:c++latest under x86 conditions (VS 15.5.2),
// compiler errors are tossed for noexcept markings being on function types
// that are identical in every other way to their non-noexcept marked types function types...
// VS 2019: There is absolutely a bug.
#define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_OFF
#else
#define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_DEFAULT_ON
#endif
#endif // noexcept is part of a function's type
#if defined(SOL_STACK_STRING_OPTIMIZATION_SIZE) && SOL_STACK_STRING_OPTIMIZATION_SIZE > 0
#define SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_ SOL_STACK_STRING_OPTIMIZATION_SIZE
#else
#define SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_ 1024
#endif
#if defined(SOL_ID_SIZE) && SOL_ID_SIZE > 0
#define SOL_ID_SIZE_I_ SOL_ID_SIZE
#else
#define SOL_ID_SIZE_I_ 512
#endif
#if defined(LUA_IDSIZE) && LUA_IDSIZE > 0
#define SOL_FILE_ID_SIZE_I_ LUA_IDSIZE
#elif defined(SOL_ID_SIZE) && SOL_ID_SIZE > 0
#define SOL_FILE_ID_SIZE_I_ SOL_FILE_ID_SIZE
#else
#define SOL_FILE_ID_SIZE_I_ 2048
#endif
#if defined(SOL_PRINT_ERRORS)
#if (SOL_PRINT_ERRORS != 0)
#define SOL_PRINT_ERRORS_I_ SOL_ON
#else
#define SOL_PRINT_ERRORS_I_ SOL_OFF
#endif
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_PRINT_ERRORS_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_PRINT_ERRORS_I_ SOL_DEFAULT_ON
#else
#define SOL_PRINT_ERRORS_I_ SOL_OFF
#endif
#endif
#if defined(SOL_DEFAULT_PASS_ON_ERROR) && (SOL_DEFAULT_PASS_ON_ERROR != 0)
#define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_ON
#else
#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
#define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_ON
#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
#define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_DEFAULT_ON
#else
#define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_OFF
#endif
#endif
#if defined(SOL_USING_CXX_LUA)
#if (SOL_USING_CXX_LUA != 0)
#define SOL_USE_CXX_LUA_I_ SOL_ON
#else
#define SOL_USE_CXX_LUA_I_ SOL_OFF
#endif
#elif defined(SOL_USE_CXX_LUA)
#if (SOL_USE_CXX_LUA != 0)
#define SOL_USE_CXX_LUA_I_ SOL_ON
#else
#define SOL_USE_CXX_LUA_I_ SOL_OFF
#endif
#else
#define SOL_USE_CXX_LUA_I_ SOL_OFF
#endif
#if defined(SOL_USING_CXX_LUAJIT)
#if (SOL_USING_CXX_LUA != 0)
#define SOL_USE_CXX_LUAJIT_I_ SOL_ON
#else
#define SOL_USE_CXX_LUAJIT_I_ SOL_OFF
#endif
#elif defined(SOL_USE_CXX_LUAJIT)
#if (SOL_USE_CXX_LUA != 0)
#define SOL_USE_CXX_LUAJIT_I_ SOL_ON
#else
#define SOL_USE_CXX_LUAJIT_I_ SOL_OFF
#endif
#else
#define SOL_USE_CXX_LUAJIT_I_ SOL_OFF
#endif
#if defined(SOL_NO_LUA_HPP)
#if (SOL_NO_LUA_HPP != 0)
#define SOL_USE_LUA_HPP_I_ SOL_OFF
#else
#define SOL_USE_LUA_HPP_I_ SOL_ON
#endif
#elif defined(SOL_USING_CXX_LUA)
#define SOL_USE_LUA_HPP_I_ SOL_OFF
#elif defined(__has_include)
#if __has_include(<lua.hpp>)
#define SOL_USE_LUA_HPP_I_ SOL_ON
#else
#define SOL_USE_LUA_HPP_I_ SOL_OFF
#endif
#else
#define SOL_USE_LUA_HPP_I_ SOL_DEFAULT_ON
#endif
#if defined(SOL_CONTAINERS_START)
#define SOL_CONTAINER_START_INDEX_I_ SOL_CONTAINERS_START
#elif defined(SOL_CONTAINERS_START_INDEX)
#define SOL_CONTAINER_START_INDEX_I_ SOL_CONTAINERS_START_INDEX
#elif defined(SOL_CONTAINER_START_INDEX)
#define SOL_CONTAINER_START_INDEX_I_ SOL_CONTAINER_START_INDEX
#else
#define SOL_CONTAINER_START_INDEX_I_ 1
#endif
#if defined (SOL_NO_MEMORY_ALIGNMENT)
#if (SOL_NO_MEMORY_ALIGNMENT != 0)
#define SOL_ALIGN_MEMORY_I_ SOL_OFF
#else
#define SOL_ALIGN_MEMORY_I_ SOL_ON
#endif
#else
#define SOL_ALIGN_MEMORY_I_ SOL_DEFAULT_ON
#endif
#if defined(SOL_USE_BOOST)
#if (SOL_USE_BOOST != 0)
#define SOL_USE_BOOST_I_ SOL_ON
#else
#define SOL_USE_BOOST_I_ SOL_OFF
#endif
#else
#define SOL_USE_BOOST_I_ SOL_OFF
#endif
#if defined(SOL_USE_UNSAFE_BASE_LOOKUP)
#if (SOL_USE_UNSAFE_BASE_LOOKUP != 0)
#define SOL_USE_UNSAFE_BASE_LOOKUP_I_ SOL_ON
#else
#define SOL_USE_UNSAFE_BASE_LOOKUP_I_ SOL_OFF
#endif
#else
#define SOL_USE_UNSAFE_BASE_LOOKUP_I_ SOL_OFF
#endif
#if defined(SOL_INSIDE_UNREAL)
#if (SOL_INSIDE_UNREAL != 0)
#define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_ON
#else
#define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_OFF
#endif
#else
#if defined(UE_BUILD_DEBUG) || defined(UE_BUILD_DEVELOPMENT) || defined(UE_BUILD_TEST) || defined(UE_BUILD_SHIPPING) || defined(UE_SERVER)
#define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_ON
#else
#define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_DEFAULT_OFF
#endif
#endif
#if defined(SOL_NO_COMPAT)
#if (SOL_NO_COMPAT != 0)
#define SOL_USE_COMPATIBILITY_LAYER_I_ SOL_OFF
#else
#define SOL_USE_COMPATIBILITY_LAYER_I_ SOL_ON
#endif
#else
#define SOL_USE_COMPATIBILITY_LAYER_I_ SOL_DEFAULT_ON
#endif
#if defined(SOL_GET_FUNCTION_POINTER_UNSAFE)
#if (SOL_GET_FUNCTION_POINTER_UNSAFE != 0)
#define SOL_GET_FUNCTION_POINTER_UNSAFE_I_ SOL_ON
#else
#define SOL_GET_FUNCTION_POINTER_UNSAFE_I_ SOL_OFF
#endif
#else
#define SOL_GET_FUNCTION_POINTER_UNSAFE_I_ SOL_DEFAULT_OFF
#endif
#if SOL_IS_ON(SOL_COMPILER_FRONTEND_MINGW_I_) && defined(__GNUC__) && (__GNUC__ < 6)
// MinGW is off its rocker in some places...
#define SOL_MINGW_CCTYPE_IS_POISONED_I_ SOL_ON
#else
#define SOL_MINGW_CCTYPE_IS_POISONED_I_ SOL_DEFAULT_OFF
#endif
// end of sol/version.hpp
#if SOL_IS_ON(SOL_INSIDE_UNREAL_ENGINE_I_)
#ifdef check
#pragma push_macro("check")
#undef check
#endif
#endif // Unreal Engine 4 Bullshit
#if SOL_IS_ON(SOL_COMPILER_GCC_I_)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wconversion"
#if __GNUC__ > 6
#pragma GCC diagnostic ignored "-Wnoexcept-type"
#endif
#elif SOL_IS_ON(SOL_COMPILER_CLANG_I_)
#elif SOL_IS_ON(SOL_COMPILER_VCXX_I_)
#pragma warning(push)
#pragma warning(disable : 4505) // unreferenced local function has been removed GEE THANKS
#endif // clang++ vs. g++ vs. VC++
// beginning of sol/forward.hpp
#ifndef SOL_FORWARD_HPP
#define SOL_FORWARD_HPP
#include <utility>
#include <type_traits>
#include <string_view>
#if SOL_IS_ON(SOL_USE_CXX_LUA_I_) || SOL_IS_ON(SOL_USE_CXX_LUAJIT_I_)
struct lua_State;
#else
extern "C" {
struct lua_State;
}
#endif // C++ Mangling for Lua vs. Not
namespace sol {
enum class type;
class stateless_reference;
template <bool b>
class basic_reference;
using reference = basic_reference<false>;
using main_reference = basic_reference<true>;
class stateless_stack_reference;
class stack_reference;
template <typename A>
class basic_bytecode;
struct lua_value;
struct proxy_base_tag;
template <typename>
struct proxy_base;
template <typename, typename>
struct table_proxy;
template <bool, typename>
class basic_table_core;
template <bool b>
using table_core = basic_table_core<b, reference>;
template <bool b>
using main_table_core = basic_table_core<b, main_reference>;
template <bool b>
using stack_table_core = basic_table_core<b, stack_reference>;
template <typename base_type>
using basic_table = basic_table_core<false, base_type>;
using table = table_core<false>;
using global_table = table_core<true>;
using main_table = main_table_core<false>;
using main_global_table = main_table_core<true>;
using stack_table = stack_table_core<false>;
using stack_global_table = stack_table_core<true>;
template <typename>
struct basic_lua_table;
using lua_table = basic_lua_table<reference>;
using stack_lua_table = basic_lua_table<stack_reference>;
template <typename T, typename base_type>
class basic_usertype;
template <typename T>
using usertype = basic_usertype<T, reference>;
template <typename T>
using stack_usertype = basic_usertype<T, stack_reference>;
template <typename base_type>
class basic_metatable;
using metatable = basic_metatable<reference>;
using stack_metatable = basic_metatable<stack_reference>;
template <typename base_t>
struct basic_environment;
using environment = basic_environment<reference>;
using main_environment = basic_environment<main_reference>;
using stack_environment = basic_environment<stack_reference>;
template <typename T, bool>
class basic_function;
template <typename T, bool, typename H>
class basic_protected_function;
using unsafe_function = basic_function<reference, false>;
using safe_function = basic_protected_function<reference, false, reference>;
using main_unsafe_function = basic_function<main_reference, false>;
using main_safe_function = basic_protected_function<main_reference, false, reference>;
using stack_unsafe_function = basic_function<stack_reference, false>;
using stack_safe_function = basic_protected_function<stack_reference, false, reference>;
using stack_aligned_unsafe_function = basic_function<stack_reference, true>;
using stack_aligned_safe_function = basic_protected_function<stack_reference, true, reference>;
using protected_function = safe_function;
using main_protected_function = main_safe_function;
using stack_protected_function = stack_safe_function;
using stack_aligned_protected_function = stack_aligned_safe_function;
#if SOL_IS_ON(SOL_SAFE_FUNCTION_OBJECTS_I_)
using function = protected_function;
using main_function = main_protected_function;
using stack_function = stack_protected_function;
using stack_aligned_function = stack_aligned_safe_function;
#else
using function = unsafe_function;
using main_function = main_unsafe_function;
using stack_function = stack_unsafe_function;
using stack_aligned_function = stack_aligned_unsafe_function;
#endif
using stack_aligned_stack_handler_function = basic_protected_function<stack_reference, true, stack_reference>;
struct unsafe_function_result;
struct protected_function_result;
using safe_function_result = protected_function_result;
#if SOL_IS_ON(SOL_SAFE_FUNCTION_OBJECTS_I_)
using function_result = safe_function_result;
#else
using function_result = unsafe_function_result;
#endif
template <typename base_t>
class basic_object_base;
template <typename base_t>
class basic_object;
template <typename base_t>
class basic_userdata;
template <typename base_t>
class basic_lightuserdata;
template <typename base_t>
class basic_coroutine;
template <typename base_t>
class basic_thread;
using object = basic_object<reference>;
using userdata = basic_userdata<reference>;
using lightuserdata = basic_lightuserdata<reference>;
using thread = basic_thread<reference>;
using coroutine = basic_coroutine<reference>;
using main_object = basic_object<main_reference>;
using main_userdata = basic_userdata<main_reference>;
using main_lightuserdata = basic_lightuserdata<main_reference>;
using main_coroutine = basic_coroutine<main_reference>;
using stack_object = basic_object<stack_reference>;
using stack_userdata = basic_userdata<stack_reference>;
using stack_lightuserdata = basic_lightuserdata<stack_reference>;
using stack_thread = basic_thread<stack_reference>;
using stack_coroutine = basic_coroutine<stack_reference>;
struct stack_proxy_base;
struct stack_proxy;
struct variadic_args;
struct variadic_results;
struct stack_count;
struct this_state;
struct this_main_state;
struct this_environment;
class state_view;
class state;
template <typename T>
struct as_table_t;
template <typename T>
struct as_container_t;
template <typename T>
struct nested;
template <typename T>
struct light;
template <typename T>
struct user;
template <typename T>
struct as_args_t;
template <typename T>
struct protect_t;
template <typename F, typename... Policies>
struct policy_wrapper;
template <typename T>
struct usertype_traits;
template <typename T>
struct unique_usertype_traits;
template <typename... Args>
struct types {
typedef std::make_index_sequence<sizeof...(Args)> indices;
static constexpr std::size_t size() {
return sizeof...(Args);
}
};
template <typename T>
struct derive : std::false_type {
typedef types<> type;
};
template <typename T>
struct base : std::false_type {
typedef types<> type;
};
template <typename T>
struct weak_derive {
static bool value;
};
template <typename T>
bool weak_derive<T>::value = false;
namespace stack {
struct record;
}
#if SOL_IS_OFF(SOL_USE_BOOST_I_)
template <class T>
class optional;
template <class T>
class optional<T&>;
#endif
using check_handler_type = int(lua_State*, int, type, type, const char*);
} // namespace sol
#define SOL_BASE_CLASSES(T, ...) \
namespace sol { \
template <> \
struct base<T> : std::true_type { \
typedef ::sol::types<__VA_ARGS__> type; \
}; \
} \
void a_sol3_detail_function_decl_please_no_collide()
#define SOL_DERIVED_CLASSES(T, ...) \
namespace sol { \
template <> \
struct derive<T> : std::true_type { \
typedef ::sol::types<__VA_ARGS__> type; \
}; \
} \
void a_sol3_detail_function_decl_please_no_collide()
#endif // SOL_FORWARD_HPP
// end of sol/forward.hpp
// beginning of sol/forward_detail.hpp
#ifndef SOL_FORWARD_DETAIL_HPP
#define SOL_FORWARD_DETAIL_HPP
// beginning of sol/traits.hpp
// beginning of sol/tuple.hpp
// beginning of sol/base_traits.hpp
#include <type_traits>
namespace sol {
namespace detail {
struct unchecked_t {};
const unchecked_t unchecked = unchecked_t{};
} // namespace detail
namespace meta {
using sfinae_yes_t = std::true_type;
using sfinae_no_t = std::false_type;
template <typename T>
using void_t = void;
template <typename T>
using unqualified = std::remove_cv<std::remove_reference_t<T>>;
template <typename T>
using unqualified_t = typename unqualified<T>::type;
namespace meta_detail {
template <typename T>
struct unqualified_non_alias : unqualified<T> {};
template <template <class...> class Test, class, class... Args>
struct is_detected : std::false_type {};
template <template <class...> class Test, class... Args>
struct is_detected<Test, void_t<Test<Args...>>, Args...> : std::true_type {};
} // namespace meta_detail
template <template <class...> class Trait, class... Args>
using is_detected = typename meta_detail::is_detected<Trait, void, Args...>::type;
template <template <class...> class Trait, class... Args>
constexpr inline bool is_detected_v = is_detected<Trait, Args...>::value;
template <std::size_t I>
using index_value = std::integral_constant<std::size_t, I>;
template <bool>
struct conditional {
template <typename T, typename U>
using type = T;
};
template <>
struct conditional<false> {
template <typename T, typename U>
using type = U;
};
template <bool B, typename T, typename U>
using conditional_t = typename conditional<B>::template type<T, U>;
namespace meta_detail {
template <typename T, template <typename...> class Templ>
struct is_specialization_of : std::false_type {};
template <typename... T, template <typename...> class Templ>
struct is_specialization_of<Templ<T...>, Templ> : std::true_type {};
} // namespace meta_detail
template <typename T, template <typename...> class Templ>
using is_specialization_of = meta_detail::is_specialization_of<std::remove_cv_t<T>, Templ>;
template <typename T, template <typename...> class Templ>
inline constexpr bool is_specialization_of_v = is_specialization_of<std::remove_cv_t<T>, Templ>::value;
template <typename T>
struct identity {
typedef T type;
};
template <typename T>
using identity_t = typename identity<T>::type;
template <typename T>
using is_builtin_type = std::integral_constant<bool, std::is_arithmetic<T>::value || std::is_pointer<T>::value || std::is_array<T>::value>;
} // namespace meta
} // namespace sol
// end of sol/base_traits.hpp
#include <tuple>
#include <cstddef>
namespace sol {
namespace detail {
using swallow = std::initializer_list<int>;
} // namespace detail
namespace meta {
template <typename T>
using is_tuple = is_specialization_of<T, std::tuple>;
template <typename T>
constexpr inline bool is_tuple_v = is_tuple<T>::value;
namespace detail {
template <typename... Args>
struct tuple_types_ { typedef types<Args...> type; };
template <typename... Args>
struct tuple_types_<std::tuple<Args...>> { typedef types<Args...> type; };
} // namespace detail
template <typename... Args>
using tuple_types = typename detail::tuple_types_<Args...>::type;
template <typename Arg>
struct pop_front_type;
template <typename Arg>
using pop_front_type_t = typename pop_front_type<Arg>::type;
template <typename... Args>
struct pop_front_type<types<Args...>> {
typedef void front_type;
typedef types<Args...> type;
};
template <typename Arg, typename... Args>
struct pop_front_type<types<Arg, Args...>> {
typedef Arg front_type;
typedef types<Args...> type;
};
template <std::size_t N, typename Tuple>
using tuple_element = std::tuple_element<N, std::remove_reference_t<Tuple>>;
template <std::size_t N, typename Tuple>
using tuple_element_t = std::tuple_element_t<N, std::remove_reference_t<Tuple>>;
template <std::size_t N, typename Tuple>
using unqualified_tuple_element = unqualified<tuple_element_t<N, Tuple>>;
template <std::size_t N, typename Tuple>
using unqualified_tuple_element_t = unqualified_t<tuple_element_t<N, Tuple>>;
} // namespace meta
} // namespace sol
// end of sol/tuple.hpp
// beginning of sol/bind_traits.hpp
namespace sol { namespace meta {
namespace meta_detail {
template <class F>
struct check_deducible_signature {
struct nat {};
template <class G>
static auto test(int) -> decltype(&G::operator(), void());
template <class>
static auto test(...) -> nat;
using type = std::is_void<decltype(test<F>(0))>;
};
} // namespace meta_detail
template <class F>
struct has_deducible_signature : meta_detail::check_deducible_signature<F>::type {};
namespace meta_detail {
template <std::size_t I, typename T>
struct void_tuple_element : meta::tuple_element<I, T> {};
template <std::size_t I>
struct void_tuple_element<I, std::tuple<>> {
typedef void type;
};
template <std::size_t I, typename T>
using void_tuple_element_t = typename void_tuple_element<I, T>::type;
template <bool it_is_noexcept, bool has_c_variadic, typename T, typename R, typename... Args>
struct basic_traits {
private:
using first_type = meta::conditional_t<std::is_void<T>::value, int, T>&;
public:
inline static constexpr const bool is_noexcept = it_is_noexcept;
inline static constexpr bool is_member_function = std::is_void<T>::value;
inline static constexpr bool has_c_var_arg = has_c_variadic;
inline static constexpr std::size_t arity = sizeof...(Args);
inline static constexpr std::size_t free_arity = sizeof...(Args) + static_cast<std::size_t>(!std::is_void<T>::value);
typedef types<Args...> args_list;
typedef std::tuple<Args...> args_tuple;
typedef T object_type;
typedef R return_type;
typedef tuple_types<R> returns_list;
typedef R(function_type)(Args...);
typedef meta::conditional_t<std::is_void<T>::value, args_list, types<first_type, Args...>> free_args_list;
typedef meta::conditional_t<std::is_void<T>::value, R(Args...), R(first_type, Args...)> free_function_type;
typedef meta::conditional_t<std::is_void<T>::value, R (*)(Args...), R (*)(first_type, Args...)> free_function_pointer_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template <std::size_t i>
using arg_at = void_tuple_element_t<i, args_tuple>;
};
template <typename Signature, bool b = has_deducible_signature<Signature>::value>
struct fx_traits : basic_traits<false, false, void, void> {};
// Free Functions
template <typename R, typename... Args>
struct fx_traits<R(Args...), false> : basic_traits<false, false, void, R, Args...> {
typedef R (*function_pointer_type)(Args...);
};
template <typename R, typename... Args>
struct fx_traits<R (*)(Args...), false> : basic_traits<false, false, void, R, Args...> {
typedef R (*function_pointer_type)(Args...);
};
template <typename R, typename... Args>
struct fx_traits<R(Args..., ...), false> : basic_traits<false, true, void, R, Args...> {
typedef R (*function_pointer_type)(Args..., ...);
};
template <typename R, typename... Args>
struct fx_traits<R (*)(Args..., ...), false> : basic_traits<false, true, void, R, Args...> {
typedef R (*function_pointer_type)(Args..., ...);
};
// Member Functions
/* C-Style Variadics */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...);
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...), false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...);
};
/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile;
};
/* Member Function Qualifiers */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) &;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...)&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) &;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) &&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...)&&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) &&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const&&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const&&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const&&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile&&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile&&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile&&;
};
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
template <typename R, typename... Args>
struct fx_traits<R(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
typedef R (*function_pointer_type)(Args...) noexcept;
};
template <typename R, typename... Args>
struct fx_traits<R (*)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
typedef R (*function_pointer_type)(Args...) noexcept;
};
template <typename R, typename... Args>
struct fx_traits<R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
typedef R (*function_pointer_type)(Args..., ...) noexcept;
};
template <typename R, typename... Args>
struct fx_traits<R (*)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
typedef R (*function_pointer_type)(Args..., ...) noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) noexcept;
};
/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) & noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) & noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) && noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) && noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const&& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const&& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile&& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile&& noexcept;
};
#endif // noexcept is part of a function's type
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_) && SOL_IS_ON(SOL_PLATFORM_X86_I_)
template <typename R, typename... Args>
struct fx_traits<R __stdcall(Args...), false> : basic_traits<false, false, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args...);
};
template <typename R, typename... Args>
struct fx_traits<R(__stdcall*)(Args...), false> : basic_traits<false, false, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args...);
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...);
};
/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile;
};
/* Member Function Qualifiers */
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) &;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) &&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const&&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&&;
};
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
template <typename R, typename... Args>
struct fx_traits<R __stdcall(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args...) noexcept;
};
template <typename R, typename... Args>
struct fx_traits<R(__stdcall*)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args...) noexcept;
};
/* __stdcall cannot be applied to functions with varargs*/
/*template <typename R, typename... Args>
struct fx_traits<__stdcall R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept;
};
template <typename R, typename... Args>
struct fx_traits<R (__stdcall *)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) noexcept;
};*/
/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) & noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) & noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const& noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const& noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile& noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile& noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) && noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) && noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const&& noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const&& noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&& noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile&& noexcept;
};*/
#endif // noexcept is part of a function's type
#endif // __stdcall x86 VC++ bug
template <typename Signature>
struct fx_traits<Signature, true>
: public fx_traits<typename fx_traits<decltype(&Signature::operator())>::function_type, false> {};
template <typename Signature, bool b = std::is_member_object_pointer<Signature>::value>
struct callable_traits
: public fx_traits<std::decay_t<Signature>> {};
template <typename R, typename T>
struct callable_traits<R(T::*), true> {
typedef meta::conditional_t<std::is_array_v<R>, std::add_lvalue_reference_t<R>, R> return_type;
typedef return_type Arg;
typedef T object_type;
using signature_type = R(T::*);
inline static constexpr bool is_noexcept = false;
inline static constexpr bool is_member_function = false;
inline static constexpr std::size_t arity = 1;
inline static constexpr std::size_t free_arity = 2;
typedef std::tuple<Arg> args_tuple;
typedef types<Arg> args_list;
typedef types<T, Arg> free_args_list;
typedef meta::tuple_types<return_type> returns_list;
typedef return_type(function_type)(T&, return_type);
typedef return_type (*function_pointer_type)(T&, Arg);
typedef return_type (*free_function_pointer_type)(T&, Arg);
template <std::size_t i>
using arg_at = void_tuple_element_t<i, args_tuple>;
};
} // namespace meta_detail
template <typename Signature>
struct bind_traits : meta_detail::callable_traits<Signature> {};
template <typename Signature>
using function_args_t = typename bind_traits<Signature>::args_list;
template <typename Signature>
using function_signature_t = typename bind_traits<Signature>::signature_type;
template <typename Signature>
using function_return_t = typename bind_traits<Signature>::return_type;
}} // namespace sol::meta
// end of sol/bind_traits.hpp
// beginning of sol/pointer_like.hpp
#include <utility>
#include <type_traits>
namespace sol {
namespace meta {
namespace meta_detail {
template <typename T>
using is_dereferenceable_test = decltype(*std::declval<T>());
template <typename T>
using is_explicitly_dereferenceable_test = decltype(std::declval<T>().operator*());
}
template <typename T>
using is_pointer_like = std::integral_constant<bool, !std::is_array_v<T> && (std::is_pointer_v<T> || is_detected_v<meta_detail::is_explicitly_dereferenceable_test, T>)>;
template <typename T>
constexpr inline bool is_pointer_like_v = is_pointer_like<T>::value;
} // namespace meta
namespace detail {
template <typename T>
auto unwrap(T&& item) -> decltype(std::forward<T>(item)) {
return std::forward<T>(item);
}
template <typename T>
T& unwrap(std::reference_wrapper<T> arg) {
return arg.get();
}
template <typename T>
inline decltype(auto) deref(T&& item) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::is_pointer_like_v<Tu>) {
return *std::forward<T>(item);
}
else {
return std::forward<T>(item);
}
}
template <typename T>
inline decltype(auto) deref_move_only(T&& item) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::is_pointer_like_v<Tu> && !std::is_pointer_v<Tu> && !std::is_copy_constructible_v<Tu>) {
return *std::forward<T>(item);
}
else {
return std::forward<T>(item);
}
}
template <typename T>
inline T* ptr(T& val) {
return std::addressof(val);
}
template <typename T>
inline T* ptr(std::reference_wrapper<T> val) {
return std::addressof(val.get());
}
template <typename T>
inline T* ptr(T* val) {
return val;
}
} // namespace detail
} // namespace sol
// end of sol/pointer_like.hpp
// beginning of sol/string_view.hpp
#include <cstddef>
#include <string>
#include <string_view>
#include <functional>
namespace sol {
template <typename C, typename T = std::char_traits<C>>
using basic_string_view = std::basic_string_view<C, T>;
typedef std::string_view string_view;
typedef std::wstring_view wstring_view;
typedef std::u16string_view u16string_view;
typedef std::u32string_view u32string_view;
typedef std::hash<std::string_view> string_view_hash;
} // namespace sol
// end of sol/string_view.hpp
#include <type_traits>
#include <cstdint>
#include <memory>
#include <functional>
#include <array>
#include <iterator>
#include <iosfwd>
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
#include <variant>
#endif // variant is weird on XCode, thanks XCode
namespace sol { namespace meta {
template <typename T>
struct unwrapped {
typedef T type;
};
template <typename T>
struct unwrapped<std::reference_wrapper<T>> {
typedef T type;
};
template <typename T>
using unwrapped_t = typename unwrapped<T>::type;
template <typename T>
struct unwrap_unqualified : unwrapped<unqualified_t<T>> {};
template <typename T>
using unwrap_unqualified_t = typename unwrap_unqualified<T>::type;
template <typename T>
struct remove_member_pointer;
template <typename R, typename T>
struct remove_member_pointer<R T::*> {
typedef R type;
};
template <typename R, typename T>
struct remove_member_pointer<R T::*const> {
typedef R type;
};
template <typename T>
using remove_member_pointer_t = remove_member_pointer<T>;
template <typename T, typename...>
struct all_same : std::true_type {};
template <typename T, typename U, typename... Args>
struct all_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value && all_same<T, Args...>::value> {};
template <typename T, typename...>
struct any_same : std::false_type {};
template <typename T, typename U, typename... Args>
struct any_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value || any_same<T, Args...>::value> {};
template <typename T, typename... Args>
constexpr inline bool any_same_v = any_same<T, Args...>::value;
template <bool B>
using boolean = std::integral_constant<bool, B>;
template <bool B>
constexpr inline bool boolean_v = boolean<B>::value;
template <typename T>
using neg = boolean<!T::value>;
template <typename T>
constexpr inline bool neg_v = neg<T>::value;
template <typename... Args>
struct all : boolean<true> {};
template <typename T, typename... Args>
struct all<T, Args...> : std::conditional_t<T::value, all<Args...>, boolean<false>> {};
template <typename... Args>
struct any : boolean<false> {};
template <typename T, typename... Args>
struct any<T, Args...> : std::conditional_t<T::value, boolean<true>, any<Args...>> {};
template <typename T, typename... Args>
constexpr inline bool all_v = all<T, Args...>::value;
template <typename T, typename... Args>
constexpr inline bool any_v = any<T, Args...>::value;
enum class enable_t { _ };
constexpr const auto enabler = enable_t::_;
template <bool value, typename T = void>
using disable_if_t = std::enable_if_t<!value, T>;
template <typename... Args>
using enable = std::enable_if_t<all<Args...>::value, enable_t>;
template <typename... Args>
using disable = std::enable_if_t<neg<all<Args...>>::value, enable_t>;
template <typename... Args>
using enable_any = std::enable_if_t<any<Args...>::value, enable_t>;
template <typename... Args>
using disable_any = std::enable_if_t<neg<any<Args...>>::value, enable_t>;
template <typename V, typename... Vs>
struct find_in_pack_v : boolean<false> {};
template <typename V, typename Vs1, typename... Vs>
struct find_in_pack_v<V, Vs1, Vs...> : any<boolean<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> {};
namespace meta_detail {
template <std::size_t I, typename T, typename... Args>
struct index_in_pack : std::integral_constant<std::size_t, SIZE_MAX> {};
template <std::size_t I, typename T, typename T1, typename... Args>
struct index_in_pack<I, T, T1, Args...>
: conditional_t<std::is_same<T, T1>::value, std::integral_constant<std::ptrdiff_t, I>, index_in_pack<I + 1, T, Args...>> {};
} // namespace meta_detail
template <typename T, typename... Args>
struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> {};
template <typename T, typename List>
struct index_in : meta_detail::index_in_pack<0, T, List> {};
template <typename T, typename... Args>
struct index_in<T, types<Args...>> : meta_detail::index_in_pack<0, T, Args...> {};
template <std::size_t I, typename... Args>
struct at_in_pack {};
template <std::size_t I, typename... Args>
using at_in_pack_t = typename at_in_pack<I, Args...>::type;
template <std::size_t I, typename Arg, typename... Args>
struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {};
template <typename Arg, typename... Args>
struct at_in_pack<0, Arg, Args...> {
typedef Arg type;
};
namespace meta_detail {
template <typename, typename TI>
using on_even = meta::boolean<(TI::value % 2) == 0>;
template <typename, typename TI>
using on_odd = meta::boolean<(TI::value % 2) == 1>;
template <typename, typename>
using on_always = std::true_type;
template <template <typename...> class When, std::size_t Limit, std::size_t I, template <typename...> class Pred, typename... Ts>
struct count_when_for_pack : std::integral_constant<std::size_t, 0> {};
template <template <typename...> class When, std::size_t Limit, std::size_t I, template <typename...> class Pred, typename T, typename... Ts>
struct count_when_for_pack<When, Limit, I, Pred, T, Ts...> : conditional_t < sizeof...(Ts)
== 0
|| Limit<2, std::integral_constant<std::size_t, I + static_cast<std::size_t>(Limit != 0 && Pred<T>::value)>,
count_when_for_pack<When, Limit - static_cast<std::size_t>(When<T, std::integral_constant<std::size_t, I>>::value),
I + static_cast<std::size_t>(When<T, std::integral_constant<std::size_t, I>>::value&& Pred<T>::value), Pred, Ts...>> {};
} // namespace meta_detail
template <template <typename...> class Pred, typename... Ts>
struct count_for_pack : meta_detail::count_when_for_pack<meta_detail::on_always, sizeof...(Ts), 0, Pred, Ts...> {};
template <template <typename...> class Pred, typename... Ts>
inline constexpr std::size_t count_for_pack_v = count_for_pack<Pred, Ts...>::value;
template <template <typename...> class Pred, typename List>
struct count_for;
template <template <typename...> class Pred, typename... Args>
struct count_for<Pred, types<Args...>> : count_for_pack<Pred, Args...> {};
template <std::size_t Limit, template <typename...> class Pred, typename... Ts>
struct count_for_to_pack : meta_detail::count_when_for_pack<meta_detail::on_always, Limit, 0, Pred, Ts...> {};
template <std::size_t Limit, template <typename...> class Pred, typename... Ts>
inline constexpr std::size_t count_for_to_pack_v = count_for_to_pack<Limit, Pred, Ts...>::value;
template <template <typename...> class When, std::size_t Limit, template <typename...> class Pred, typename... Ts>
struct count_when_for_to_pack : meta_detail::count_when_for_pack<When, Limit, 0, Pred, Ts...> {};
template <template <typename...> class When, std::size_t Limit, template <typename...> class Pred, typename... Ts>
inline constexpr std::size_t count_when_for_to_pack_v = count_when_for_to_pack<When, Limit, Pred, Ts...>::value;
template <template <typename...> class Pred, typename... Ts>
using count_even_for_pack = count_when_for_to_pack<meta_detail::on_even, sizeof...(Ts), Pred, Ts...>;
template <template <typename...> class Pred, typename... Ts>
inline constexpr std::size_t count_even_for_pack_v = count_even_for_pack<Pred, Ts...>::value;
template <template <typename...> class Pred, typename... Ts>
using count_odd_for_pack = count_when_for_to_pack<meta_detail::on_odd, sizeof...(Ts), Pred, Ts...>;
template <template <typename...> class Pred, typename... Ts>
inline constexpr std::size_t count_odd_for_pack_v = count_odd_for_pack<Pred, Ts...>::value;
template <typename... Args>
struct return_type {
typedef std::tuple<Args...> type;
};
template <typename T>
struct return_type<T> {
typedef T type;
};
template <>
struct return_type<> {
typedef void type;
};
template <typename... Args>
using return_type_t = typename return_type<Args...>::type;
namespace meta_detail {
template <typename>
struct always_true : std::true_type {};
struct is_invokable_tester {
template <typename Fun, typename... Args>
static always_true<decltype(std::declval<Fun>()(std::declval<Args>()...))> test(int);
template <typename...>
static std::false_type test(...);
};
} // namespace meta_detail
template <typename T>
struct is_invokable;
template <typename Fun, typename... Args>
struct is_invokable<Fun(Args...)> : decltype(meta_detail::is_invokable_tester::test<Fun, Args...>(0)) {};
namespace meta_detail {
template <typename T, typename = void>
struct is_callable : std::is_function<std::remove_pointer_t<T>> {};
template <typename T>
struct is_callable<T,
std::enable_if_t<std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value
&& std::is_same<decltype(void(&T::operator())), void>::value>> {};
template <typename T>
struct is_callable<T,
std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value
&& std::is_destructible<unqualified_t<T>>::value>> {
struct F {
void operator()() {};
};
struct Derived : T, F {};
template <typename U, U>
struct Check;
template <typename V>
static sfinae_no_t test(Check<void (F::*)(), &V::operator()>*);
template <typename>
static sfinae_yes_t test(...);
static constexpr bool value = std::is_same_v<decltype(test<Derived>(0)), sfinae_yes_t>;
};
template <typename T>
struct is_callable<T,
std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value
&& !std::is_destructible<unqualified_t<T>>::value>> {
struct F {
void operator()() {};
};
struct Derived : T, F {
~Derived() = delete;
};
template <typename U, U>
struct Check;
template <typename V>
static sfinae_no_t test(Check<void (F::*)(), &V::operator()>*);
template <typename>
static sfinae_yes_t test(...);
static constexpr bool value = std::is_same_v<decltype(test<Derived>(0)), sfinae_yes_t>;
};
struct has_begin_end_impl {
template <typename T, typename U = unqualified_t<T>, typename B = decltype(std::declval<U&>().begin()),
typename E = decltype(std::declval<U&>().end())>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_key_type_impl {
template <typename T, typename U = unqualified_t<T>, typename V = typename U::key_type>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_key_comp_impl {
template <typename T, typename V = decltype(std::declval<unqualified_t<T>>().key_comp())>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_load_factor_impl {
template <typename T, typename V = decltype(std::declval<unqualified_t<T>>().load_factor())>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_mapped_type_impl {
template <typename T, typename V = typename unqualified_t<T>::mapped_type>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_value_type_impl {
template <typename T, typename V = typename unqualified_t<T>::value_type>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_iterator_impl {
template <typename T, typename V = typename unqualified_t<T>::iterator>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_key_value_pair_impl {
template <typename T, typename U = unqualified_t<T>, typename V = typename U::value_type, typename F = decltype(std::declval<V&>().first),
typename S = decltype(std::declval<V&>().second)>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
template <typename T>
struct has_push_back_test {
private:
template <typename C>
static sfinae_yes_t test(decltype(std::declval<C>().push_back(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
template <typename C>
static sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
};
template <typename T>
struct has_insert_test {
private:
template <typename C>
static sfinae_yes_t test(decltype(std::declval<C>().insert(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(),
std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
template <typename C>
static sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
};
template <typename T>
struct has_insert_after_test {
private:
template <typename C>
static sfinae_yes_t test(decltype(std::declval<C>().insert_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(),
std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
template <typename C>
static sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
};
template <typename T>
struct has_size_test {
private:
template <typename C>
static sfinae_yes_t test(decltype(std::declval<C>().size())*);
template <typename C>
static sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
};
template <typename T>
struct has_max_size_test {
private:
template <typename C>
static sfinae_yes_t test(decltype(std::declval<C>().max_size())*);
template <typename C>
static sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
};
template <typename T>
struct has_to_string_test {
private:
template <typename C>
static sfinae_yes_t test(decltype(std::declval<C>().to_string())*);
template <typename C>
static sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
};
template <typename T, typename U, typename = void>
class supports_op_less_test : public std::false_type {};
template <typename T, typename U>
class supports_op_less_test<T, U, void_t<decltype(std::declval<T&>() < std::declval<U&>())>>
: public std::integral_constant<bool,
!is_specialization_of_v<unqualified_t<T>, std::variant> && !is_specialization_of_v<unqualified_t<U>, std::variant>> {};
template <typename T, typename U, typename = void>
class supports_op_equal_test : public std::false_type {};
template <typename T, typename U>
class supports_op_equal_test<T, U, void_t<decltype(std::declval<T&>() == std::declval<U&>())>>
: public std::integral_constant<bool,
!is_specialization_of_v<unqualified_t<T>, std::variant> && !is_specialization_of_v<unqualified_t<U>, std::variant>> {};
template <typename T, typename U, typename = void>
class supports_op_less_equal_test : public std::false_type {};
template <typename T, typename U>
class supports_op_less_equal_test<T, U, void_t<decltype(std::declval<T&>() <= std::declval<U&>())>>
: public std::integral_constant<bool,
!is_specialization_of_v<unqualified_t<T>, std::variant> && !is_specialization_of_v<unqualified_t<U>, std::variant>> {};
template <typename T, typename U, typename = void>
class supports_op_left_shift_test : public std::false_type {};
template <typename T, typename U>
class supports_op_left_shift_test<T, U, void_t<decltype(std::declval<T&>() << std::declval<U&>())>> : public std::true_type {};
template <typename T, typename = void>
class supports_adl_to_string_test : public std::false_type {};
template <typename T>
class supports_adl_to_string_test<T, void_t<decltype(to_string(std::declval<const T&>()))>> : public std::true_type {};
template <typename T, bool b>
struct is_matched_lookup_impl : std::false_type {};
template <typename T>
struct is_matched_lookup_impl<T, true> : std::is_same<typename T::key_type, typename T::value_type> {};
template <typename T>
using non_void_t = meta::conditional_t<std::is_void_v<T>, ::sol::detail::unchecked_t, T>;
} // namespace meta_detail
template <typename T, typename U = T>
class supports_op_less : public meta_detail::supports_op_less_test<T, U> {};
template <typename T, typename U = T>
class supports_op_equal : public meta_detail::supports_op_equal_test<T, U> {};
template <typename T, typename U = T>
class supports_op_less_equal : public meta_detail::supports_op_less_equal_test<T, U> {};
template <typename T, typename U = T>
class supports_op_left_shift : public meta_detail::supports_op_left_shift_test<T, U> {};
template <typename T>
class supports_adl_to_string : public meta_detail::supports_adl_to_string_test<T> {};
template <typename T>
class supports_to_string_member : public meta::boolean<meta_detail::has_to_string_test<meta_detail::non_void_t<T>>::value> {};
template <typename T>
using is_callable = boolean<meta_detail::is_callable<T>::value>;
template <typename T>
constexpr inline bool is_callable_v = is_callable<T>::value;
template <typename T>
struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test<T>(0)) {};
template <typename T>
constexpr inline bool has_begin_end_v = has_begin_end<T>::value;
template <typename T>
struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test<T>(0)) {};
template <typename T>
struct has_key_type : decltype(meta_detail::has_key_type_impl::test<T>(0)) {};
template <typename T>
struct has_key_comp : decltype(meta_detail::has_key_comp_impl::test<T>(0)) {};
template <typename T>
struct has_load_factor : decltype(meta_detail::has_load_factor_impl::test<T>(0)) {};
template <typename T>
struct has_mapped_type : decltype(meta_detail::has_mapped_type_impl::test<T>(0)) {};
template <typename T>
struct has_iterator : decltype(meta_detail::has_iterator_impl::test<T>(0)) {};
template <typename T>
struct has_value_type : decltype(meta_detail::has_value_type_impl::test<T>(0)) {};
template <typename T>
using has_push_back = meta::boolean<meta_detail::has_push_back_test<T>::value>;
template <typename T>
using has_max_size = meta::boolean<meta_detail::has_max_size_test<T>::value>;
template <typename T>
using has_insert = meta::boolean<meta_detail::has_insert_test<T>::value>;
template <typename T>
using has_insert_after = meta::boolean<meta_detail::has_insert_after_test<T>::value>;
template <typename T>
using has_size = meta::boolean<meta_detail::has_size_test<T>::value>;
template <typename T>
using is_associative = meta::all<has_key_type<T>, has_key_value_pair<T>, has_mapped_type<T>>;
template <typename T>
using is_lookup = meta::all<has_key_type<T>, has_value_type<T>>;
template <typename T>
using is_ordered = meta::all<has_key_comp<T>, meta::neg<has_load_factor<T>>>;
template <typename T>
using is_matched_lookup = meta_detail::is_matched_lookup_impl<T, is_lookup<T>::value>;
template <typename T>
using is_initializer_list = meta::is_specialization_of<T, std::initializer_list>;
template <typename T>
constexpr inline bool is_initializer_list_v = is_initializer_list<T>::value;
template <typename T, typename CharT = char>
using is_string_literal_array_of = boolean<std::is_array_v<T> && std::is_same_v<std::remove_all_extents_t<T>, CharT>>;
template <typename T, typename CharT = char>
constexpr inline bool is_string_literal_array_of_v = is_string_literal_array_of<T, CharT>::value;
template <typename T>
using is_string_literal_array = boolean<std::is_array_v<T> && any_same_v<std::remove_all_extents_t<T>, char, char16_t, char32_t, wchar_t>>;
template <typename T>
constexpr inline bool is_string_literal_array_v = is_string_literal_array<T>::value;
template <typename T, typename CharT>
struct is_string_of : std::false_type {};
template <typename CharT, typename CharTargetT, typename TraitsT, typename AllocT>
struct is_string_of<std::basic_string<CharT, TraitsT, AllocT>, CharTargetT> : std::is_same<CharT, CharTargetT> {};
template <typename T, typename CharT>
constexpr inline bool is_string_of_v = is_string_of<T, CharT>::value;
template <typename T, typename CharT>
struct is_string_view_of : std::false_type {};
template <typename CharT, typename CharTargetT, typename TraitsT>
struct is_string_view_of<std::basic_string_view<CharT, TraitsT>, CharTargetT> : std::is_same<CharT, CharTargetT> {};
template <typename T, typename CharT>
constexpr inline bool is_string_view_of_v = is_string_view_of<T, CharT>::value;
template <typename T>
using is_string_like
= meta::boolean<is_specialization_of_v<T, std::basic_string> || is_specialization_of_v<T, std::basic_string_view> || is_string_literal_array_v<T>>;
template <typename T>
constexpr inline bool is_string_like_v = is_string_like<T>::value;
template <typename T, typename CharT = char>
using is_string_constructible = meta::boolean<
is_string_literal_array_of_v<T,
CharT> || std::is_same_v<T, const CharT*> || std::is_same_v<T, CharT> || is_string_of_v<T, CharT> || std::is_same_v<T, std::initializer_list<CharT>> || is_string_view_of_v<T, CharT>>;
template <typename T, typename CharT = char>
constexpr inline bool is_string_constructible_v = is_string_constructible<T, CharT>::value;
template <typename T>
using is_string_like_or_constructible = meta::boolean<is_string_like_v<T> || is_string_constructible_v<T>>;
template <typename T>
struct is_pair : std::false_type {};
template <typename T1, typename T2>
struct is_pair<std::pair<T1, T2>> : std::true_type {};
template <typename T, typename Char>
using is_c_str_of = any<std::is_same<T, const Char*>, std::is_same<T, Char const* const>, std::is_same<T, Char*>, is_string_of<T, Char>,
is_string_literal_array_of<T, Char>>;
template <typename T, typename Char>
constexpr inline bool is_c_str_of_v = is_c_str_of<T, Char>::value;
template <typename T>
using is_c_str = is_c_str_of<T, char>;
template <typename T>
constexpr inline bool is_c_str_v = is_c_str<T>::value;
template <typename T>
struct is_move_only : all<neg<std::is_reference<T>>, neg<std::is_copy_constructible<unqualified_t<T>>>, std::is_move_constructible<unqualified_t<T>>> {};
template <typename T>
using is_not_move_only = neg<is_move_only<T>>;
namespace meta_detail {
template <typename T>
decltype(auto) force_tuple(T&& x) {
if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::tuple>) {
return std::forward<T>(x);
}
else {
return std::tuple<T>(std::forward<T>(x));
}
}
} // namespace meta_detail
template <typename... X>
decltype(auto) tuplefy(X&&... x) {
return std::tuple_cat(meta_detail::force_tuple(std::forward<X>(x))...);
}
template <typename T, typename = void>
struct iterator_tag {
using type = std::input_iterator_tag;
};
template <typename T>
struct iterator_tag<T, conditional_t<false, typename std::iterator_traits<T>::iterator_category, void>> {
using type = typename std::iterator_traits<T>::iterator_category;
};
}} // namespace sol::meta
// end of sol/traits.hpp
namespace sol {
namespace detail {
const bool default_safe_function_calls =
#if SOL_IS_ON(SOL_SAFE_FUNCTION_CALLS_I_)
true;
#else
false;
#endif
} // namespace detail
namespace meta { namespace meta_detail {
}} // namespace meta::meta_detail
namespace stack { namespace stack_detail {
using undefined_method_func = void (*)(stack_reference);
template <typename T>
void set_undefined_methods_on(stack_reference);
struct undefined_metatable;
}} // namespace stack::stack_detail
} // namespace sol
#endif // SOL_FORWARD_DETAIL_HPP
// end of sol/forward_detail.hpp
// beginning of sol/bytecode.hpp
// beginning of sol/compatibility.hpp
// beginning of sol/compatibility/lua_version.hpp
#if SOL_IS_ON(SOL_USE_CXX_LUA_I_)
#include <lua.h>
#include <lualib.h>
#include <lauxlib.h>
#elif SOL_IS_ON(SOL_USE_LUA_HPP_I_)
#include <lua.hpp>
#else
extern "C" {
#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>
}
#endif // C++ Mangling for Lua vs. Not
#if defined(SOL_LUAJIT)
#if (SOL_LUAJIT != 0)
#define SOL_USE_LUAJIT_I_ SOL_ON
#else
#define SOL_USE_LUAJIT_I_ SOL_OFF
#endif
#elif defined(LUAJIT_VERSION)
#define SOL_USE_LUAJIT_I_ SOL_OFF
#else
#define SOL_USE_LUAJIT_I_ SOL_DEFAULT_OFF
#endif // luajit
#if SOL_IS_ON(SOL_USE_CXX_LUAJIT_I_)
#include <luajit.h>
#elif SOL_IS_ON(SOL_USE_LUAJIT_I_)
extern "C" {
#include <luajit.h>
}
#endif // C++ LuaJIT ... whatever that means
#if defined(SOL_LUAJIT_VERSION)
#define SOL_LUAJIT_VERSION_I_ SOL_LUAJIT_VERSION
#elif SOL_IS_ON(SOL_USE_LUAJIT_I_)
#define SOL_LUAJIT_VERSION_I_ LUAJIT_VERSION_NUM
#else
#define SOL_LUAJIT_VERSION_I_ 0
#endif
#if defined(MOONJIT_VERSION)
#define SOL_USE_MOONJIT_I_ SOL_ON
#else
#define SOL_USE_MOONJIT_I_ SOL_OFF
#endif
#if !defined(SOL_LUA_VERSION)
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502
#define SOL_LUA_VERSION LUA_VERSION_NUM
#elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
#define SOL_LUA_VERSION LUA_VERSION_NUM
#elif !defined(LUA_VERSION_NUM) || !(LUA_VERSION_NUM)
// Definitely 5.0
#define SOL_LUA_VERSION 500
#else
// ??? Not sure, assume latest?
#define SOL_LUA_VERSION 504
#endif // Lua Version 503, 502, 501 || luajit, 500
#endif // SOL_LUA_VERSION
#if defined(SOL_LUA_VERSION)
#define SOL_LUA_VESION_I_ SOL_LUA_VERSION
#else
#define SOL_LUA_VESION_I_ 504
#endif
#if defined(SOL_EXCEPTIONS_ALWAYS_UNSAFE)
#if (SOL_EXCEPTIONS_ALWAYS_UNSAFE != 0)
#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_OFF
#else
#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_ON
#endif
#elif defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
#if (SOL_EXCEPTIONS_SAFE_PROPAGATION != 0)
#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_ON
#else
#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_OFF
#endif
#elif SOL_LUAJIT_VERSION_I_ >= 20100
// LuaJIT 2.1.0-beta3 and better have exception support locked in for all platforms (mostly)
#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_DEFAULT_ON
#elif SOL_LUAJIT_VERSION_I_ >= 20000
// LuaJIT 2.0.x have exception support only on x64 builds
#if SOL_IS_ON(SOL_PLATFORM_X64_I_)
#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_DEFAULT_ON
#else
#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_OFF
#endif
#else
// otherwise, there is no exception safety for
// shoving exceptions through Lua and errors should
// always be serialized
#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_DEFAULT_OFF
#endif // LuaJIT beta 02.01.00 have better exception handling on all platforms since beta3
#if defined(SOL_LUAJIT_USE_EXCEPTION_TRAMPOLINE)
#if (SOL_LUAJIT_USE_EXCEPTION_TRAMPOLINE != 0)
#define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_ON
#else
#define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_OFF
#endif
#else
#if SOL_IS_OFF(SOL_PROPAGATE_EXCEPTIONS_I_) && SOL_IS_ON(SOL_USE_LUAJIT_I_)
#define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_ON
#else
#define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_DEFAULT_OFF
#endif
#endif
#if defined(SOL_LUAL_STREAM_HAS_CLOSE_FUNCTION)
#if (SOL_LUAL_STREAM_HAS_CLOSE_FUNCTION != 0)
#define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_ON
#else
#define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_OFF
#endif
#else
#if SOL_IS_OFF(SOL_USE_LUAJIT_I_) && (SOL_LUA_VERSION > 501)
#define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_ON
#else
#define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_DEFAULT_OFF
#endif
#endif
// end of sol/compatibility/lua_version.hpp
#if SOL_IS_ON(SOL_USE_COMPATIBILITY_LAYER_I_)
#if SOL_IS_ON(SOL_USE_CXX_LUA_I_) || SOL_IS_ON(SOL_USE_CXX_LUAJIT_I_)
#ifndef COMPAT53_LUA_CPP
#define COMPAT53_LUA_CPP 1
#endif // Build Lua Compat layer as C++
#endif
#ifndef COMPAT53_INCLUDE_SOURCE
#define COMPAT53_INCLUDE_SOURCE 1
#endif // Build Compat Layer Inline
// beginning of sol/compatibility/compat-5.3.h
#ifndef KEPLER_PROJECT_COMPAT53_H_
#define KEPLER_PROJECT_COMPAT53_H_
#include <stddef.h>
#include <limits.h>
#include <string.h>
#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
extern "C" {
#endif
#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>
#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
}
#endif
#ifndef COMPAT53_PREFIX
/* we chose this name because many other lua bindings / libs have
* their own compatibility layer, and that use the compat53 declaration
* frequently, causing all kinds of linker / compiler issues
*/
# define COMPAT53_PREFIX kp_compat53
#endif // COMPAT53_PREFIX
#ifndef COMPAT53_API
# if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE
# if defined(__GNUC__) || defined(__clang__)
# define COMPAT53_API __attribute__((__unused__)) static inline
# else
# define COMPAT53_API static inline
# endif /* Clang/GCC */
# else /* COMPAT53_INCLUDE_SOURCE */
/* we are not including source, so everything is extern */
# define COMPAT53_API extern
# endif /* COMPAT53_INCLUDE_SOURCE */
#endif /* COMPAT53_PREFIX */
#define COMPAT53_CONCAT_HELPER(a, b) a##b
#define COMPAT53_CONCAT(a, b) COMPAT53_CONCAT_HELPER(a, b)
/* declarations for Lua 5.1 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
/* XXX not implemented:
* lua_arith (new operators)
* lua_upvalueid
* lua_upvaluejoin
* lua_version
* lua_yieldk
*/
#ifndef LUA_OK
# define LUA_OK 0
#endif
#ifndef LUA_OPADD
# define LUA_OPADD 0
#endif
#ifndef LUA_OPSUB
# define LUA_OPSUB 1
#endif
#ifndef LUA_OPMUL
# define LUA_OPMUL 2
#endif
#ifndef LUA_OPDIV
# define LUA_OPDIV 3
#endif
#ifndef LUA_OPMOD
# define LUA_OPMOD 4
#endif
#ifndef LUA_OPPOW
# define LUA_OPPOW 5
#endif
#ifndef LUA_OPUNM
# define LUA_OPUNM 6
#endif
#ifndef LUA_OPEQ
# define LUA_OPEQ 0
#endif
#ifndef LUA_OPLT
# define LUA_OPLT 1
#endif
#ifndef LUA_OPLE
# define LUA_OPLE 2
#endif
/* LuaJIT/Lua 5.1 does not have the updated
* error codes for thread status/function returns (but some patched versions do)
* define it only if it's not found
*/
#if !defined(LUA_ERRGCMM)
/* Use + 2 because in some versions of Lua (Lua 5.1)
* LUA_ERRFILE is defined as (LUA_ERRERR+1)
* so we need to avoid it (LuaJIT might have something at this
* integer value too)
*/
# define LUA_ERRGCMM (LUA_ERRERR + 2)
#endif /* LUA_ERRGCMM define */
#if !defined(MOONJIT_VERSION)
typedef size_t lua_Unsigned;
#endif
typedef struct luaL_Buffer_53 {
luaL_Buffer b; /* make incorrect code crash! */
char *ptr;
size_t nelems;
size_t capacity;
lua_State *L2;
} luaL_Buffer_53;
#define luaL_Buffer luaL_Buffer_53
/* In PUC-Rio 5.1, userdata is a simple FILE*
* In LuaJIT, it's a struct where the first member is a FILE*
* We can't support the `closef` member
*/
typedef struct luaL_Stream {
FILE *f;
} luaL_Stream;
#define lua_absindex COMPAT53_CONCAT(COMPAT53_PREFIX, _absindex)
COMPAT53_API int lua_absindex(lua_State *L, int i);
#define lua_arith COMPAT53_CONCAT(COMPAT53_PREFIX, _arith)
COMPAT53_API void lua_arith(lua_State *L, int op);
#define lua_compare COMPAT53_CONCAT(COMPAT53_PREFIX, _compare)
COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op);
#define lua_copy COMPAT53_CONCAT(COMPAT53_PREFIX, _copy)
COMPAT53_API void lua_copy(lua_State *L, int from, int to);
#define lua_getuservalue(L, i) \
(lua_getfenv((L), (i)), lua_type((L), -1))
#define lua_setuservalue(L, i) \
(luaL_checktype((L), -1, LUA_TTABLE), lua_setfenv((L), (i)))
#define lua_len COMPAT53_CONCAT(COMPAT53_PREFIX, _len)
COMPAT53_API void lua_len(lua_State *L, int i);
#define lua_pushstring(L, s) \
(lua_pushstring((L), (s)), lua_tostring((L), -1))
#define lua_pushlstring(L, s, len) \
((((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len))), lua_tostring((L), -1))
#ifndef luaL_newlibtable
# define luaL_newlibtable(L, l) \
(lua_createtable((L), 0, sizeof((l))/sizeof(*(l))-1))
#endif
#ifndef luaL_newlib
# define luaL_newlib(L, l) \
(luaL_newlibtable((L), (l)), luaL_register((L), NULL, (l)))
#endif
#ifndef lua_pushglobaltable
# define lua_pushglobaltable(L) \
lua_pushvalue((L), LUA_GLOBALSINDEX)
#endif
#define lua_rawgetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawgetp)
COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p);
#define lua_rawsetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawsetp)
COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p);
#define lua_rawlen(L, i) lua_objlen((L), (i))
#define lua_tointeger(L, i) lua_tointegerx((L), (i), NULL)
#define lua_tonumberx COMPAT53_CONCAT(COMPAT53_PREFIX, _tonumberx)
COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum);
#define luaL_checkversion COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkversion)
COMPAT53_API void luaL_checkversion(lua_State *L);
#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char* source, const char* mode);
#define luaL_loadfilex COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadfilex)
COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode);
#define luaL_loadbufferx COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadbufferx)
COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode);
#define luaL_checkstack COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkstack_53)
COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg);
#define luaL_getsubtable COMPAT53_CONCAT(COMPAT53_PREFIX, L_getsubtable)
COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char *name);
#define luaL_len COMPAT53_CONCAT(COMPAT53_PREFIX, L_len)
COMPAT53_API lua_Integer luaL_len(lua_State *L, int i);
#define luaL_setfuncs COMPAT53_CONCAT(COMPAT53_PREFIX, L_setfuncs)
COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup);
#define luaL_setmetatable COMPAT53_CONCAT(COMPAT53_PREFIX, L_setmetatable)
COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname);
#define luaL_testudata COMPAT53_CONCAT(COMPAT53_PREFIX, L_testudata)
COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname);
#define luaL_traceback COMPAT53_CONCAT(COMPAT53_PREFIX, L_traceback)
COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level);
#define luaL_fileresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_fileresult)
COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname);
#define luaL_execresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_execresult)
COMPAT53_API int luaL_execresult(lua_State *L, int stat);
#define lua_callk(L, na, nr, ctx, cont) \
((void)(ctx), (void)(cont), lua_call((L), (na), (nr)))
#define lua_pcallk(L, na, nr, err, ctx, cont) \
((void)(ctx), (void)(cont), lua_pcall((L), (na), (nr), (err)))
#define lua_resume(L, from, nargs) \
((void)(from), lua_resume((L), (nargs)))
#define luaL_buffinit COMPAT53_CONCAT(COMPAT53_PREFIX, _buffinit_53)
COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B);
#define luaL_prepbuffsize COMPAT53_CONCAT(COMPAT53_PREFIX, _prepbufsize_53)
COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s);
#define luaL_addlstring COMPAT53_CONCAT(COMPAT53_PREFIX, _addlstring_53)
COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l);
#define luaL_addvalue COMPAT53_CONCAT(COMPAT53_PREFIX, _addvalue_53)
COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B);
#define luaL_pushresult COMPAT53_CONCAT(COMPAT53_PREFIX, _pushresult_53)
COMPAT53_API void luaL_pushresult(luaL_Buffer_53 *B);
#undef luaL_buffinitsize
#define luaL_buffinitsize(L, B, s) \
(luaL_buffinit((L), (B)), luaL_prepbuffsize((B), (s)))
#undef luaL_prepbuffer
#define luaL_prepbuffer(B) \
luaL_prepbuffsize((B), LUAL_BUFFERSIZE)
#undef luaL_addchar
#define luaL_addchar(B, c) \
((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize((B), 1)), \
((B)->ptr[(B)->nelems++] = (c)))
#undef luaL_addsize
#define luaL_addsize(B, s) \
((B)->nelems += (s))
#undef luaL_addstring
#define luaL_addstring(B, s) \
luaL_addlstring((B), (s), strlen((s)))
#undef luaL_pushresultsize
#define luaL_pushresultsize(B, s) \
(luaL_addsize((B), (s)), luaL_pushresult((B)))
#if defined(LUA_COMPAT_APIINTCASTS)
#define lua_pushunsigned(L, n) \
lua_pushinteger((L), (lua_Integer)(n))
#define lua_tounsignedx(L, i, is) \
((lua_Unsigned)lua_tointegerx((L), (i), (is)))
#define lua_tounsigned(L, i) \
lua_tounsignedx((L), (i), NULL)
#define luaL_checkunsigned(L, a) \
((lua_Unsigned)luaL_checkinteger((L), (a)))
#define luaL_optunsigned(L, a, d) \
((lua_Unsigned)luaL_optinteger((L), (a), (lua_Integer)(d)))
#endif
#endif /* Lua 5.1 only */
/* declarations for Lua 5.1 and 5.2 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502
typedef int lua_KContext;
typedef int(*lua_KFunction)(lua_State *L, int status, lua_KContext ctx);
#define lua_dump(L, w, d, s) \
((void)(s), lua_dump((L), (w), (d)))
#define lua_getfield(L, i, k) \
(lua_getfield((L), (i), (k)), lua_type((L), -1))
#define lua_gettable(L, i) \
(lua_gettable((L), (i)), lua_type((L), -1))
#define lua_geti COMPAT53_CONCAT(COMPAT53_PREFIX, _geti)
COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i);
#define lua_isinteger COMPAT53_CONCAT(COMPAT53_PREFIX, _isinteger)
COMPAT53_API int lua_isinteger(lua_State *L, int index);
#define lua_tointegerx COMPAT53_CONCAT(COMPAT53_PREFIX, _tointegerx_53)
COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum);
#define lua_numbertointeger(n, p) \
((*(p) = (lua_Integer)(n)), 1)
#define lua_rawget(L, i) \
(lua_rawget((L), (i)), lua_type((L), -1))
#define lua_rawgeti(L, i, n) \
(lua_rawgeti((L), (i), (n)), lua_type((L), -1))
#define lua_rotate COMPAT53_CONCAT(COMPAT53_PREFIX, _rotate)
COMPAT53_API void lua_rotate(lua_State *L, int idx, int n);
#define lua_seti COMPAT53_CONCAT(COMPAT53_PREFIX, _seti)
COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i);
#define lua_stringtonumber COMPAT53_CONCAT(COMPAT53_PREFIX, _stringtonumber)
COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s);
#define luaL_tolstring COMPAT53_CONCAT(COMPAT53_PREFIX, L_tolstring)
COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len);
#define luaL_getmetafield(L, o, e) \
(luaL_getmetafield((L), (o), (e)) ? lua_type((L), -1) : LUA_TNIL)
#define luaL_newmetatable(L, tn) \
(luaL_newmetatable((L), (tn)) ? (lua_pushstring((L), (tn)), lua_setfield((L), -2, "__name"), 1) : 0)
#define luaL_requiref COMPAT53_CONCAT(COMPAT53_PREFIX, L_requiref_53)
COMPAT53_API void luaL_requiref(lua_State *L, const char *modname,
lua_CFunction openf, int glb);
#endif /* Lua 5.1 and Lua 5.2 */
/* declarations for Lua 5.2 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 502
/* XXX not implemented:
* lua_isyieldable
* lua_getextraspace
* lua_arith (new operators)
* lua_pushfstring (new formats)
*/
#define lua_getglobal(L, n) \
(lua_getglobal((L), (n)), lua_type((L), -1))
#define lua_getuservalue(L, i) \
(lua_getuservalue((L), (i)), lua_type((L), -1))
#define lua_pushlstring(L, s, len) \
(((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len)))
#define lua_rawgetp(L, i, p) \
(lua_rawgetp((L), (i), (p)), lua_type((L), -1))
#define LUA_KFUNCTION(_name) \
static int (_name)(lua_State *L, int status, lua_KContext ctx); \
static int (_name ## _52)(lua_State *L) { \
lua_KContext ctx; \
int status = lua_getctx(L, &ctx); \
return (_name)(L, status, ctx); \
} \
static int (_name)(lua_State *L, int status, lua_KContext ctx)
#define lua_pcallk(L, na, nr, err, ctx, cont) \
lua_pcallk((L), (na), (nr), (err), (ctx), cont ## _52)
#define lua_callk(L, na, nr, ctx, cont) \
lua_callk((L), (na), (nr), (ctx), cont ## _52)
#define lua_yieldk(L, nr, ctx, cont) \
lua_yieldk((L), (nr), (ctx), cont ## _52)
#ifdef lua_call
# undef lua_call
# define lua_call(L, na, nr) \
(lua_callk)((L), (na), (nr), 0, NULL)
#endif
#ifdef lua_pcall
# undef lua_pcall
# define lua_pcall(L, na, nr, err) \
(lua_pcallk)((L), (na), (nr), (err), 0, NULL)
#endif
#ifdef lua_yield
# undef lua_yield
# define lua_yield(L, nr) \
(lua_yieldk)((L), (nr), 0, NULL)
#endif
#endif /* Lua 5.2 only */
/* other Lua versions */
#if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM < 501 || LUA_VERSION_NUM > 504
# error "unsupported Lua version (i.e. not Lua 5.1, 5.2, 5.3, or 5.4)"
#endif /* other Lua versions except 5.1, 5.2, 5.3, and 5.4 */
/* helper macro for defining continuation functions (for every version
* *except* Lua 5.2) */
#ifndef LUA_KFUNCTION
#define LUA_KFUNCTION(_name) \
static int (_name)(lua_State *L, int status, lua_KContext ctx)
#endif
#if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE == 1
// beginning of sol/compatibility/compat-5.3.c.h
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
/* don't compile it again if it already is included via compat53.h */
#ifndef KEPLER_PROJECT_COMPAT53_C_
#define KEPLER_PROJECT_COMPAT53_C_
/* definitions for Lua 5.1 only */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
#ifndef COMPAT53_FOPEN_NO_LOCK
#if defined(_MSC_VER)
#define COMPAT53_FOPEN_NO_LOCK 1
#else /* otherwise */
#define COMPAT53_FOPEN_NO_LOCK 0
#endif /* VC++ only so far */
#endif /* No-lock fopen_s usage if possible */
#if defined(_MSC_VER) && COMPAT53_FOPEN_NO_LOCK
#include <share.h>
#endif /* VC++ _fsopen for share-allowed file read */
#ifndef COMPAT53_HAVE_STRERROR_R
#if defined(__GLIBC__) || defined(_POSIX_VERSION) || defined(__APPLE__) || (!defined(__MINGW32__) && defined(__GNUC__) && (__GNUC__ < 6))
#define COMPAT53_HAVE_STRERROR_R 1
#else /* none of the defines matched: define to 0 */
#define COMPAT53_HAVE_STRERROR_R 0
#endif /* have strerror_r of some form */
#endif /* strerror_r */
#ifndef COMPAT53_HAVE_STRERROR_S
#if defined(_MSC_VER) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || (defined(__STDC_LIB_EXT1__) && __STDC_LIB_EXT1__)
#define COMPAT53_HAVE_STRERROR_S 1
#else /* not VC++ or C11 */
#define COMPAT53_HAVE_STRERROR_S 0
#endif /* strerror_s from VC++ or C11 */
#endif /* strerror_s */
#ifndef COMPAT53_LUA_FILE_BUFFER_SIZE
#define COMPAT53_LUA_FILE_BUFFER_SIZE 4096
#endif /* Lua File Buffer Size */
static char* compat53_strerror(int en, char* buff, size_t sz) {
#if COMPAT53_HAVE_STRERROR_R
/* use strerror_r here, because it's available on these specific platforms */
if (sz > 0) {
buff[0] = '\0';
/* we don't care whether the GNU version or the XSI version is used: */
if (strerror_r(en, buff, sz)) {
/* Yes, we really DO want to ignore the return value!
* GCC makes that extra hard, not even a (void) cast will do. */
}
if (buff[0] == '\0') {
/* Buffer is unchanged, so we probably have called GNU strerror_r which
* returned a static constant string. Chances are that strerror will
* return the same static constant string and therefore be thread-safe. */
return strerror(en);
}
}
return buff; /* sz is 0 *or* strerror_r wrote into the buffer */
#elif COMPAT53_HAVE_STRERROR_S
/* for MSVC and other C11 implementations, use strerror_s since it's
* provided by default by the libraries */
strerror_s(buff, sz, en);
return buff;
#else
/* fallback, but strerror is not guaranteed to be threadsafe due to modifying
* errno itself and some impls not locking a static buffer for it ... but most
* known systems have threadsafe errno: this might only change if the locale
* is changed out from under someone while this function is being called */
(void)buff;
(void)sz;
return strerror(en);
#endif
}
COMPAT53_API int lua_absindex(lua_State* L, int i) {
if (i < 0 && i > LUA_REGISTRYINDEX)
i += lua_gettop(L) + 1;
return i;
}
static void compat53_call_lua(lua_State* L, char const code[], size_t len, int nargs, int nret) {
lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code);
if (lua_type(L, -1) != LUA_TFUNCTION) {
lua_pop(L, 1);
if (luaL_loadbuffer(L, code, len, "=none"))
lua_error(L);
lua_pushvalue(L, -1);
lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code);
}
lua_insert(L, -nargs - 1);
lua_call(L, nargs, nret);
}
static const char compat53_arith_code[]
= "local op,a,b=...\n"
"if op==0 then return a+b\n"
"elseif op==1 then return a-b\n"
"elseif op==2 then return a*b\n"
"elseif op==3 then return a/b\n"
"elseif op==4 then return a%b\n"
"elseif op==5 then return a^b\n"
"elseif op==6 then return -a\n"
"end\n";
COMPAT53_API void lua_arith(lua_State* L, int op) {
if (op < LUA_OPADD || op > LUA_OPUNM)
luaL_error(L, "invalid 'op' argument for lua_arith");
luaL_checkstack(L, 5, "not enough stack slots");
if (op == LUA_OPUNM)
lua_pushvalue(L, -1);
lua_pushnumber(L, op);
lua_insert(L, -3);
compat53_call_lua(L, compat53_arith_code, sizeof(compat53_arith_code) - 1, 3, 1);
}
static const char compat53_compare_code[]
= "local a,b=...\n"
"return a<=b\n";
COMPAT53_API int lua_compare(lua_State* L, int idx1, int idx2, int op) {
int result = 0;
switch (op) {
case LUA_OPEQ:
return lua_equal(L, idx1, idx2);
case LUA_OPLT:
return lua_lessthan(L, idx1, idx2);
case LUA_OPLE:
luaL_checkstack(L, 5, "not enough stack slots");
idx1 = lua_absindex(L, idx1);
idx2 = lua_absindex(L, idx2);
lua_pushvalue(L, idx1);
lua_pushvalue(L, idx2);
compat53_call_lua(L, compat53_compare_code, sizeof(compat53_compare_code) - 1, 2, 1);
result = lua_toboolean(L, -1);
lua_pop(L, 1);
return result;
default:
luaL_error(L, "invalid 'op' argument for lua_compare");
}
return 0;
}
COMPAT53_API void lua_copy(lua_State* L, int from, int to) {
int abs_to = lua_absindex(L, to);
luaL_checkstack(L, 1, "not enough stack slots");
lua_pushvalue(L, from);
lua_replace(L, abs_to);
}
COMPAT53_API void lua_len(lua_State* L, int i) {
switch (lua_type(L, i)) {
case LUA_TSTRING:
lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
break;
case LUA_TTABLE:
if (!luaL_callmeta(L, i, "__len"))
lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
break;
case LUA_TUSERDATA:
if (luaL_callmeta(L, i, "__len"))
break;
/* FALLTHROUGH */
default:
luaL_error(L, "attempt to get length of a %s value", lua_typename(L, lua_type(L, i)));
}
}
COMPAT53_API int lua_rawgetp(lua_State* L, int i, const void* p) {
int abs_i = lua_absindex(L, i);
lua_pushlightuserdata(L, (void*)p);
lua_rawget(L, abs_i);
return lua_type(L, -1);
}
COMPAT53_API void lua_rawsetp(lua_State* L, int i, const void* p) {
int abs_i = lua_absindex(L, i);
luaL_checkstack(L, 1, "not enough stack slots");
lua_pushlightuserdata(L, (void*)p);
lua_insert(L, -2);
lua_rawset(L, abs_i);
}
COMPAT53_API lua_Number lua_tonumberx(lua_State* L, int i, int* isnum) {
lua_Number n = lua_tonumber(L, i);
if (isnum != NULL) {
*isnum = (n != 0 || lua_isnumber(L, i));
}
return n;
}
COMPAT53_API void luaL_checkversion(lua_State* L) {
(void)L;
}
COMPAT53_API void luaL_checkstack(lua_State* L, int sp, const char* msg) {
if (!lua_checkstack(L, sp + LUA_MINSTACK)) {
if (msg != NULL)
luaL_error(L, "stack overflow (%s)", msg);
else {
lua_pushliteral(L, "stack overflow");
lua_error(L);
}
}
}
COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char* name) {
int abs_i = lua_absindex(L, i);
luaL_checkstack(L, 3, "not enough stack slots");
lua_pushstring(L, name);
lua_gettable(L, abs_i);
if (lua_istable(L, -1))
return 1;
lua_pop(L, 1);
lua_newtable(L);
lua_pushstring(L, name);
lua_pushvalue(L, -2);
lua_settable(L, abs_i);
return 0;
}
COMPAT53_API lua_Integer luaL_len(lua_State* L, int i) {
lua_Integer res = 0;
int isnum = 0;
luaL_checkstack(L, 1, "not enough stack slots");
lua_len(L, i);
res = lua_tointegerx(L, -1, &isnum);
lua_pop(L, 1);
if (!isnum)
luaL_error(L, "object length is not an integer");
return res;
}
COMPAT53_API void luaL_setfuncs(lua_State* L, const luaL_Reg* l, int nup) {
luaL_checkstack(L, nup + 1, "too many upvalues");
for (; l->name != NULL; l++) { /* fill the table with given functions */
int i;
lua_pushstring(L, l->name);
for (i = 0; i < nup; i++) /* copy upvalues to the top */
lua_pushvalue(L, -(nup + 1));
lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */
lua_settable(L, -(nup + 3)); /* table must be below the upvalues, the name and the closure */
}
lua_pop(L, nup); /* remove upvalues */
}
COMPAT53_API void luaL_setmetatable(lua_State* L, const char* tname) {
luaL_checkstack(L, 1, "not enough stack slots");
luaL_getmetatable(L, tname);
lua_setmetatable(L, -2);
}
COMPAT53_API void* luaL_testudata(lua_State* L, int i, const char* tname) {
void* p = lua_touserdata(L, i);
luaL_checkstack(L, 2, "not enough stack slots");
if (p == NULL || !lua_getmetatable(L, i))
return NULL;
else {
int res = 0;
luaL_getmetatable(L, tname);
res = lua_rawequal(L, -1, -2);
lua_pop(L, 2);
if (!res)
p = NULL;
}
return p;
}
static int compat53_countlevels(lua_State* L) {
lua_Debug ar;
int li = 1, le = 1;
/* find an upper bound */
while (lua_getstack(L, le, &ar)) {
li = le;
le *= 2;
}
/* do a binary search */
while (li < le) {
int m = (li + le) / 2;
if (lua_getstack(L, m, &ar))
li = m + 1;
else
le = m;
}
return le - 1;
}
static int compat53_findfield(lua_State* L, int objidx, int level) {
if (level == 0 || !lua_istable(L, -1))
return 0; /* not found */
lua_pushnil(L); /* start 'next' loop */
while (lua_next(L, -2)) { /* for each pair in table */
if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */
if (lua_rawequal(L, objidx, -1)) { /* found object? */
lua_pop(L, 1); /* remove value (but keep name) */
return 1;
}
else if (compat53_findfield(L, objidx, level - 1)) { /* try recursively */
lua_remove(L, -2); /* remove table (but keep name) */
lua_pushliteral(L, ".");
lua_insert(L, -2); /* place '.' between the two names */
lua_concat(L, 3);
return 1;
}
}
lua_pop(L, 1); /* remove value */
}
return 0; /* not found */
}
static int compat53_pushglobalfuncname(lua_State* L, lua_Debug* ar) {
int top = lua_gettop(L);
lua_getinfo(L, "f", ar); /* push function */
lua_pushvalue(L, LUA_GLOBALSINDEX);
if (compat53_findfield(L, top + 1, 2)) {
lua_copy(L, -1, top + 1); /* move name to proper place */
lua_pop(L, 2); /* remove pushed values */
return 1;
}
else {
lua_settop(L, top); /* remove function and global table */
return 0;
}
}
static void compat53_pushfuncname(lua_State* L, lua_Debug* ar) {
if (*ar->namewhat != '\0') /* is there a name? */
lua_pushfstring(L, "function " LUA_QS, ar->name);
else if (*ar->what == 'm') /* main? */
lua_pushliteral(L, "main chunk");
else if (*ar->what == 'C') {
if (compat53_pushglobalfuncname(L, ar)) {
lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1));
lua_remove(L, -2); /* remove name */
}
else
lua_pushliteral(L, "?");
}
else
lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined);
}
#define COMPAT53_LEVELS1 12 /* size of the first part of the stack */
#define COMPAT53_LEVELS2 10 /* size of the second part of the stack */
COMPAT53_API void luaL_traceback(lua_State* L, lua_State* L1, const char* msg, int level) {
lua_Debug ar;
int top = lua_gettop(L);
int numlevels = compat53_countlevels(L1);
int mark = (numlevels > COMPAT53_LEVELS1 + COMPAT53_LEVELS2) ? COMPAT53_LEVELS1 : 0;
if (msg)
lua_pushfstring(L, "%s\n", msg);
lua_pushliteral(L, "stack traceback:");
while (lua_getstack(L1, level++, &ar)) {
if (level == mark) { /* too many levels? */
lua_pushliteral(L, "\n\t..."); /* add a '...' */
level = numlevels - COMPAT53_LEVELS2; /* and skip to last ones */
}
else {
lua_getinfo(L1, "Slnt", &ar);
lua_pushfstring(L, "\n\t%s:", ar.short_src);
if (ar.currentline > 0)
lua_pushfstring(L, "%d:", ar.currentline);
lua_pushliteral(L, " in ");
compat53_pushfuncname(L, &ar);
lua_concat(L, lua_gettop(L) - top);
}
}
lua_concat(L, lua_gettop(L) - top);
}
COMPAT53_API int luaL_fileresult(lua_State* L, int stat, const char* fname) {
const char* serr = NULL;
int en = errno; /* calls to Lua API may change this value */
char buf[512] = { 0 };
if (stat) {
lua_pushboolean(L, 1);
return 1;
}
else {
lua_pushnil(L);
serr = compat53_strerror(en, buf, sizeof(buf));
if (fname)
lua_pushfstring(L, "%s: %s", fname, serr);
else
lua_pushstring(L, serr);
lua_pushnumber(L, (lua_Number)en);
return 3;
}
}
static int compat53_checkmode(lua_State* L, const char* mode, const char* modename, int err) {
if (mode && strchr(mode, modename[0]) == NULL) {
lua_pushfstring(L, "attempt to load a %s chunk (mode is '%s')", modename, mode);
return err;
}
return LUA_OK;
}
typedef struct {
lua_Reader reader;
void* ud;
int has_peeked_data;
const char* peeked_data;
size_t peeked_data_size;
} compat53_reader_data;
static const char* compat53_reader(lua_State* L, void* ud, size_t* size) {
compat53_reader_data* data = (compat53_reader_data*)ud;
if (data->has_peeked_data) {
data->has_peeked_data = 0;
*size = data->peeked_data_size;
return data->peeked_data;
}
else
return data->reader(L, data->ud, size);
}
COMPAT53_API int lua_load(lua_State* L, lua_Reader reader, void* data, const char* source, const char* mode) {
int status = LUA_OK;
compat53_reader_data compat53_data = { reader, data, 1, 0, 0 };
compat53_data.peeked_data = reader(L, data, &(compat53_data.peeked_data_size));
if (compat53_data.peeked_data && compat53_data.peeked_data_size && compat53_data.peeked_data[0] == LUA_SIGNATURE[0]) /* binary file? */
status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
else
status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
if (status != LUA_OK)
return status;
/* we need to call the original 5.1 version of lua_load! */
#undef lua_load
return lua_load(L, compat53_reader, &compat53_data, source);
#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
}
typedef struct {
int n; /* number of pre-read characters */
FILE* f; /* file being read */
char buff[COMPAT53_LUA_FILE_BUFFER_SIZE]; /* area for reading file */
} compat53_LoadF;
static const char* compat53_getF(lua_State* L, void* ud, size_t* size) {
compat53_LoadF* lf = (compat53_LoadF*)ud;
(void)L; /* not used */
if (lf->n > 0) { /* are there pre-read characters to be read? */
*size = lf->n; /* return them (chars already in buffer) */
lf->n = 0; /* no more pre-read characters */
}
else { /* read a block from file */
/* 'fread' can return > 0 *and* set the EOF flag. If next call to
'compat53_getF' called 'fread', it might still wait for user input.
The next check avoids this problem. */
if (feof(lf->f))
return NULL;
*size = fread(lf->buff, 1, sizeof(lf->buff), lf->f); /* read block */
}
return lf->buff;
}
static int compat53_errfile(lua_State* L, const char* what, int fnameindex) {
char buf[512] = { 0 };
const char* serr = compat53_strerror(errno, buf, sizeof(buf));
const char* filename = lua_tostring(L, fnameindex) + 1;
lua_pushfstring(L, "cannot %s %s: %s", what, filename, serr);
lua_remove(L, fnameindex);
return LUA_ERRFILE;
}
static int compat53_skipBOM(compat53_LoadF* lf) {
const char* p = "\xEF\xBB\xBF"; /* UTF-8 BOM mark */
int c;
lf->n = 0;
do {
c = getc(lf->f);
if (c == EOF || c != *(const unsigned char*)p++)
return c;
lf->buff[lf->n++] = (char)c; /* to be read by the parser */
} while (*p != '\0');
lf->n = 0; /* prefix matched; discard it */
return getc(lf->f); /* return next character */
}
/*
** reads the first character of file 'f' and skips an optional BOM mark
** in its beginning plus its first line if it starts with '#'. Returns
** true if it skipped the first line. In any case, '*cp' has the
** first "valid" character of the file (after the optional BOM and
** a first-line comment).
*/
static int compat53_skipcomment(compat53_LoadF* lf, int* cp) {
int c = *cp = compat53_skipBOM(lf);
if (c == '#') { /* first line is a comment (Unix exec. file)? */
do { /* skip first line */
c = getc(lf->f);
} while (c != EOF && c != '\n');
*cp = getc(lf->f); /* skip end-of-line, if present */
return 1; /* there was a comment */
}
else
return 0; /* no comment */
}
COMPAT53_API int luaL_loadfilex(lua_State* L, const char* filename, const char* mode) {
compat53_LoadF lf;
int status, readstatus;
int c;
int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */
if (filename == NULL) {
lua_pushliteral(L, "=stdin");
lf.f = stdin;
}
else {
lua_pushfstring(L, "@%s", filename);
#if defined(_MSC_VER)
/* This code is here to stop a deprecation error that stops builds
* if a certain macro is defined. While normally not caring would
* be best, some header-only libraries and builds can't afford to
* dictate this to the user. A quick check shows that fopen_s this
* goes back to VS 2005, and _fsopen goes back to VS 2003 .NET,
* possibly even before that so we don't need to do any version
* number checks, since this has been there since forever. */
/* TO USER: if you want the behavior of typical fopen_s/fopen,
* which does lock the file on VC++, define the macro used below to 0 */
#if COMPAT53_FOPEN_NO_LOCK
lf.f = _fsopen(filename, "r", _SH_DENYNO); /* do not lock the file in any way */
if (lf.f == NULL)
return compat53_errfile(L, "open", fnameindex);
#else /* use default locking version */
if (fopen_s(&lf.f, filename, "r") != 0)
return compat53_errfile(L, "open", fnameindex);
#endif /* Locking vs. No-locking fopen variants */
#else
lf.f = fopen(filename, "r"); /* default stdlib doesn't forcefully lock files here */
if (lf.f == NULL)
return compat53_errfile(L, "open", fnameindex);
#endif
}
if (compat53_skipcomment(&lf, &c)) /* read initial portion */
lf.buff[lf.n++] = '\n'; /* add line to correct line numbers */
if (c == LUA_SIGNATURE[0] && filename) { /* binary file? */
#if defined(_MSC_VER)
if (freopen_s(&lf.f, filename, "rb", lf.f) != 0)
return compat53_errfile(L, "reopen", fnameindex);
#else
lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */
if (lf.f == NULL)
return compat53_errfile(L, "reopen", fnameindex);
#endif
compat53_skipcomment(&lf, &c); /* re-read initial portion */
}
if (c != EOF)
lf.buff[lf.n++] = (char)c; /* 'c' is the first character of the stream */
status = lua_load(L, &compat53_getF, &lf, lua_tostring(L, -1), mode);
readstatus = ferror(lf.f);
if (filename)
fclose(lf.f); /* close file (even in case of errors) */
if (readstatus) {
lua_settop(L, fnameindex); /* ignore results from 'lua_load' */
return compat53_errfile(L, "read", fnameindex);
}
lua_remove(L, fnameindex);
return status;
}
COMPAT53_API int luaL_loadbufferx(lua_State* L, const char* buff, size_t sz, const char* name, const char* mode) {
int status = LUA_OK;
if (sz > 0 && buff[0] == LUA_SIGNATURE[0]) {
status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
}
else {
status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
}
if (status != LUA_OK)
return status;
return luaL_loadbuffer(L, buff, sz, name);
}
#if !defined(l_inspectstat) \
&& (defined(unix) || defined(__unix) || defined(__unix__) || defined(__TOS_AIX__) || defined(_SYSTYPE_BSD) || (defined(__APPLE__) && defined(__MACH__)))
/* some form of unix; check feature macros in unistd.h for details */
#include <unistd.h>
/* check posix version; the relevant include files and macros probably
* were available before 2001, but I'm not sure */
#if defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L
#include <sys/wait.h>
#define l_inspectstat(stat, what) \
if (WIFEXITED(stat)) { \
stat = WEXITSTATUS(stat); \
} \
else if (WIFSIGNALED(stat)) { \
stat = WTERMSIG(stat); \
what = "signal"; \
}
#endif
#endif
/* provide default (no-op) version */
#if !defined(l_inspectstat)
#define l_inspectstat(stat, what) ((void)0)
#endif
COMPAT53_API int luaL_execresult(lua_State* L, int stat) {
const char* what = "exit";
if (stat == -1)
return luaL_fileresult(L, 0, NULL);
else {
l_inspectstat(stat, what);
if (*what == 'e' && stat == 0)
lua_pushboolean(L, 1);
else
lua_pushnil(L);
lua_pushstring(L, what);
lua_pushinteger(L, stat);
return 3;
}
}
COMPAT53_API void luaL_buffinit(lua_State* L, luaL_Buffer_53* B) {
/* make it crash if used via pointer to a 5.1-style luaL_Buffer */
B->b.p = NULL;
B->b.L = NULL;
B->b.lvl = 0;
/* reuse the buffer from the 5.1-style luaL_Buffer though! */
B->ptr = B->b.buffer;
B->capacity = LUAL_BUFFERSIZE;
B->nelems = 0;
B->L2 = L;
}
COMPAT53_API char* luaL_prepbuffsize(luaL_Buffer_53* B, size_t s) {
if (B->capacity - B->nelems < s) { /* needs to grow */
char* newptr = NULL;
size_t newcap = B->capacity * 2;
if (newcap - B->nelems < s)
newcap = B->nelems + s;
if (newcap < B->capacity) /* overflow */
luaL_error(B->L2, "buffer too large");
newptr = (char*)lua_newuserdata(B->L2, newcap);
memcpy(newptr, B->ptr, B->nelems);
if (B->ptr != B->b.buffer)
lua_replace(B->L2, -2); /* remove old buffer */
B->ptr = newptr;
B->capacity = newcap;
}
return B->ptr + B->nelems;
}
COMPAT53_API void luaL_addlstring(luaL_Buffer_53* B, const char* s, size_t l) {
memcpy(luaL_prepbuffsize(B, l), s, l);
luaL_addsize(B, l);
}
COMPAT53_API void luaL_addvalue(luaL_Buffer_53* B) {
size_t len = 0;
const char* s = lua_tolstring(B->L2, -1, &len);
if (!s)
luaL_error(B->L2, "cannot convert value to string");
if (B->ptr != B->b.buffer)
lua_insert(B->L2, -2); /* userdata buffer must be at stack top */
luaL_addlstring(B, s, len);
lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1);
}
void luaL_pushresult(luaL_Buffer_53* B) {
lua_pushlstring(B->L2, B->ptr, B->nelems);
if (B->ptr != B->b.buffer)
lua_replace(B->L2, -2); /* remove userdata buffer */
}
#endif /* Lua 5.1 */
/* definitions for Lua 5.1 and Lua 5.2 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502
COMPAT53_API int lua_geti(lua_State* L, int index, lua_Integer i) {
index = lua_absindex(L, index);
lua_pushinteger(L, i);
lua_gettable(L, index);
return lua_type(L, -1);
}
COMPAT53_API int lua_isinteger(lua_State* L, int index) {
if (lua_type(L, index) == LUA_TNUMBER) {
lua_Number n = lua_tonumber(L, index);
lua_Integer i = lua_tointeger(L, index);
if (i == n)
return 1;
}
return 0;
}
COMPAT53_API lua_Integer lua_tointegerx(lua_State* L, int i, int* isnum) {
int ok = 0;
lua_Number n = lua_tonumberx(L, i, &ok);
if (ok) {
if (n == (lua_Integer)n) {
if (isnum)
*isnum = 1;
return (lua_Integer)n;
}
}
if (isnum)
*isnum = 0;
return 0;
}
static void compat53_reverse(lua_State* L, int a, int b) {
for (; a < b; ++a, --b) {
lua_pushvalue(L, a);
lua_pushvalue(L, b);
lua_replace(L, a);
lua_replace(L, b);
}
}
COMPAT53_API void lua_rotate(lua_State* L, int idx, int n) {
int n_elems = 0;
idx = lua_absindex(L, idx);
n_elems = lua_gettop(L) - idx + 1;
if (n < 0)
n += n_elems;
if (n > 0 && n < n_elems) {
luaL_checkstack(L, 2, "not enough stack slots available");
n = n_elems - n;
compat53_reverse(L, idx, idx + n - 1);
compat53_reverse(L, idx + n, idx + n_elems - 1);
compat53_reverse(L, idx, idx + n_elems - 1);
}
}
COMPAT53_API void lua_seti(lua_State* L, int index, lua_Integer i) {
luaL_checkstack(L, 1, "not enough stack slots available");
index = lua_absindex(L, index);
lua_pushinteger(L, i);
lua_insert(L, -2);
lua_settable(L, index);
}
#if !defined(lua_str2number)
#define lua_str2number(s, p) strtod((s), (p))
#endif
COMPAT53_API size_t lua_stringtonumber(lua_State* L, const char* s) {
char* endptr;
lua_Number n = lua_str2number(s, &endptr);
if (endptr != s) {
while (*endptr != '\0' && isspace((unsigned char)*endptr))
++endptr;
if (*endptr == '\0') {
lua_pushnumber(L, n);
return endptr - s + 1;
}
}
return 0;
}
COMPAT53_API const char* luaL_tolstring(lua_State* L, int idx, size_t* len) {
if (!luaL_callmeta(L, idx, "__tostring")) {
int t = lua_type(L, idx), tt = 0;
char const* name = NULL;
switch (t) {
case LUA_TNIL:
lua_pushliteral(L, "nil");
break;
case LUA_TSTRING:
case LUA_TNUMBER:
lua_pushvalue(L, idx);
break;
case LUA_TBOOLEAN:
if (lua_toboolean(L, idx))
lua_pushliteral(L, "true");
else
lua_pushliteral(L, "false");
break;
default:
tt = luaL_getmetafield(L, idx, "__name");
name = (tt == LUA_TSTRING) ? lua_tostring(L, -1) : lua_typename(L, t);
lua_pushfstring(L, "%s: %p", name, lua_topointer(L, idx));
if (tt != LUA_TNIL)
lua_replace(L, -2);
break;
}
}
else {
if (!lua_isstring(L, -1))
luaL_error(L, "'__tostring' must return a string");
}
return lua_tolstring(L, -1, len);
}
COMPAT53_API void luaL_requiref(lua_State* L, const char* modname, lua_CFunction openf, int glb) {
luaL_checkstack(L, 3, "not enough stack slots available");
luaL_getsubtable(L, LUA_REGISTRYINDEX, "_LOADED");
if (lua_getfield(L, -1, modname) == LUA_TNIL) {
lua_pop(L, 1);
lua_pushcfunction(L, openf);
lua_pushstring(L, modname);
lua_call(L, 1, 1);
lua_pushvalue(L, -1);
lua_setfield(L, -3, modname);
}
if (glb) {
lua_pushvalue(L, -1);
lua_setglobal(L, modname);
}
lua_replace(L, -2);
}
#endif /* Lua 5.1 and 5.2 */
#endif /* KEPLER_PROJECT_COMPAT53_C_ */
/*********************************************************************
* This file contains parts of Lua 5.2's and Lua 5.3's source code:
*
* Copyright (C) 1994-2014 Lua.org, PUC-Rio.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*********************************************************************/
// end of sol/compatibility/compat-5.3.c.h
#endif
#endif /* KEPLER_PROJECT_COMPAT53_H_ */
// end of sol/compatibility/compat-5.3.h
// beginning of sol/compatibility/compat-5.4.h
#ifndef NOT_KEPLER_PROJECT_COMPAT54_H_
#define NOT_KEPLER_PROJECT_COMPAT54_H_
#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
extern "C" {
#endif
#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>
#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
}
#endif
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 504
#if !defined(LUA_ERRGCMM)
/* So Lua 5.4 actually removes this, which breaks sol2...
man, this API is quite unstable...!
*/
# define LUA_ERRGCMM (LUA_ERRERR + 2)
#endif /* LUA_ERRGCMM define */
#endif // Lua 5.4 only
#endif // NOT_KEPLER_PROJECT_COMPAT54_H_// end of sol/compatibility/compat-5.4.h
#endif
// end of sol/compatibility.hpp
#include <vector>
#include <cstdint>
#include <cstddef>
namespace sol {
template <typename Allocator = std::allocator<std::byte>>
class basic_bytecode : private std::vector<std::byte, Allocator> {
private:
using base_t = std::vector<std::byte, Allocator>;
public:
using typename base_t::allocator_type;
using typename base_t::const_iterator;
using typename base_t::const_pointer;
using typename base_t::const_reference;
using typename base_t::const_reverse_iterator;
using typename base_t::difference_type;
using typename base_t::iterator;
using typename base_t::pointer;
using typename base_t::reference;
using typename base_t::reverse_iterator;
using typename base_t::size_type;
using typename base_t::value_type;
using base_t::base_t;
using base_t::operator=;
using base_t::data;
using base_t::empty;
using base_t::max_size;
using base_t::size;
using base_t::at;
using base_t::operator[];
using base_t::back;
using base_t::front;
using base_t::begin;
using base_t::cbegin;
using base_t::cend;
using base_t::end;
using base_t::crbegin;
using base_t::crend;
using base_t::rbegin;
using base_t::rend;
using base_t::get_allocator;
using base_t::swap;
using base_t::clear;
using base_t::emplace;
using base_t::emplace_back;
using base_t::erase;
using base_t::insert;
using base_t::pop_back;
using base_t::push_back;
using base_t::reserve;
using base_t::resize;
using base_t::shrink_to_fit;
string_view as_string_view() const {
return string_view(reinterpret_cast<const char*>(this->data()), this->size());
}
};
template <typename Container>
inline int basic_insert_dump_writer(lua_State*, const void* memory, size_t memory_size, void* userdata) {
using storage_t = Container;
const std::byte* p_code = static_cast<const std::byte*>(memory);
storage_t& bc = *static_cast<storage_t*>(userdata);
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
bc.insert(bc.cend(), p_code, p_code + memory_size);
#else
try {
bc.insert(bc.cend(), p_code, p_code + memory_size);
}
catch (...) {
return -1;
}
#endif
return 0;
}
using bytecode = basic_bytecode<>;
constexpr inline auto bytecode_dump_writer = &basic_insert_dump_writer<bytecode>;
} // namespace sol
// end of sol/bytecode.hpp
// beginning of sol/stack.hpp
// beginning of sol/trampoline.hpp
// beginning of sol/types.hpp
// beginning of sol/error.hpp
#include <stdexcept>
#include <string>
#include <array>
namespace sol {
namespace detail {
struct direct_error_tag {};
const auto direct_error = direct_error_tag{};
struct error_result {
int results;
const char* format_string;
std::array<const char*, 4> args_strings;
error_result() : results(0), format_string(nullptr) {
}
error_result(int results) : results(results), format_string(nullptr) {
}
error_result(const char* fmt, const char* msg) : results(0), format_string(fmt) {
args_strings[0] = msg;
}
};
inline int handle_errors(lua_State* L, const error_result& er) {
if (er.format_string == nullptr) {
return er.results;
}
return luaL_error(L, er.format_string, er.args_strings[0], er.args_strings[1], er.args_strings[2], er.args_strings[3]);
}
} // namespace detail
class error : public std::runtime_error {
private:
// Because VC++ is upsetting, most of the time!
std::string what_reason;
public:
error(const std::string& str) : error(detail::direct_error, "lua: error: " + str) {
}
error(std::string&& str) : error(detail::direct_error, "lua: error: " + std::move(str)) {
}
error(detail::direct_error_tag, const std::string& str) : std::runtime_error(""), what_reason(str) {
}
error(detail::direct_error_tag, std::string&& str) : std::runtime_error(""), what_reason(std::move(str)) {
}
error(const error& e) = default;
error(error&& e) = default;
error& operator=(const error& e) = default;
error& operator=(error&& e) = default;
virtual const char* what() const noexcept override {
return what_reason.c_str();
}
};
} // namespace sol
// end of sol/error.hpp
// beginning of sol/optional.hpp
// beginning of sol/in_place.hpp
#include <cstddef>
#include <utility>
namespace sol {
using in_place_t = std::in_place_t;
constexpr std::in_place_t in_place {};
constexpr std::in_place_t in_place_of {};
template <typename T>
using in_place_type_t = std::in_place_type_t<T>;
template <typename T>
constexpr std::in_place_type_t<T> in_place_type {};
template <size_t I>
using in_place_index_t = std::in_place_index_t<I>;
template <size_t I>
constexpr in_place_index_t<I> in_place_index {};
} // namespace sol
// end of sol/in_place.hpp
#if SOL_IS_ON(SOL_USE_BOOST_I_)
#include <boost/optional.hpp>
#else
// beginning of sol/optional_implementation.hpp
#define SOL_TL_OPTIONAL_VERSION_MAJOR 0
#define SOL_TL_OPTIONAL_VERSION_MINOR 5
#include <exception>
#include <functional>
#include <new>
#include <type_traits>
#include <utility>
#include <cstdlib>
#include <optional>
#if (defined(_MSC_VER) && _MSC_VER == 1900)
#define SOL_TL_OPTIONAL_MSVC2015
#endif
#if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && !defined(__clang__))
#define SOL_TL_OPTIONAL_GCC49
#endif
#if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 4 && !defined(__clang__))
#define SOL_TL_OPTIONAL_GCC54
#endif
#if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 5 && !defined(__clang__))
#define SOL_TL_OPTIONAL_GCC55
#endif
#if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && !defined(__clang__))
#define SOL_TL_OPTIONAL_NO_CONSTRR
#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) std::has_trivial_copy_constructor<T>::value
#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::has_trivial_copy_assign<T>::value
#define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
#elif (defined(__GNUC__) && __GNUC__ < 8 && !defined(__clang__))
#ifndef SOL_TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX
#define SOL_TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX
namespace sol { namespace detail {
template <class T>
struct is_trivially_copy_constructible : std::is_trivially_copy_constructible<T> {};
#ifdef _GLIBCXX_VECTOR
template <class T, class A>
struct is_trivially_copy_constructible<std::vector<T, A>> : std::is_trivially_copy_constructible<T> {};
#endif
}} // namespace sol::detail
#endif
#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) sol::detail::is_trivially_copy_constructible<T>::value
#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::is_trivially_copy_assignable<T>::value
#define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
#else
#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) std::is_trivially_copy_constructible<T>::value
#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::is_trivially_copy_assignable<T>::value
#define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
#endif
#if __cplusplus > 201103L
#define SOL_TL_OPTIONAL_CXX14
#endif
#if (__cplusplus == 201103L || defined(SOL_TL_OPTIONAL_MSVC2015) || defined(SOL_TL_OPTIONAL_GCC49))
#define SOL_TL_OPTIONAL_11_CONSTEXPR
#else
/// \exclude
#define SOL_TL_OPTIONAL_11_CONSTEXPR constexpr
#endif
namespace sol {
#ifndef SOL_TL_MONOSTATE_INPLACE_MUTEX
#define SOL_TL_MONOSTATE_INPLACE_MUTEX
/// \brief Used to represent an optional with no data; essentially a bool
class monostate {};
#endif
template <class T>
class optional;
/// \exclude
namespace detail {
#ifndef SOL_TL_TRAITS_MUTEX
#define SOL_TL_TRAITS_MUTEX
// C++14-style aliases for brevity
template <class T>
using remove_const_t = typename std::remove_const<T>::type;
template <class T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <class T>
using decay_t = typename std::decay<T>::type;
template <bool E, class T = void>
using enable_if_t = typename std::enable_if<E, T>::type;
template <bool B, class T, class F>
using conditional_t = typename std::conditional<B, T, F>::type;
// std::conjunction from C++17
template <class...>
struct conjunction : std::true_type {};
template <class B>
struct conjunction<B> : B {};
template <class B, class... Bs>
struct conjunction<B, Bs...> : std::conditional<bool(B::value), conjunction<Bs...>, B>::type {};
#if defined(_LIBCPP_VERSION) && __cplusplus == 201103L
#define SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
#endif
#ifdef SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
template <class T>
struct is_pointer_to_non_const_member_func : std::false_type {};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)> : std::true_type {};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)&> : std::true_type {};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) &&> : std::true_type {};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile> : std::true_type {};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&> : std::true_type {};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&&> : std::true_type {};
template <class T>
struct is_const_or_const_ref : std::false_type {};
template <class T>
struct is_const_or_const_ref<T const&> : std::true_type {};
template <class T>
struct is_const_or_const_ref<T const> : std::true_type {};
#endif
// std::invoke from C++17
// https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround
template <typename Fn, typename... Args,
#ifdef SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
typename = enable_if_t<!(is_pointer_to_non_const_member_func<Fn>::value && is_const_or_const_ref<Args...>::value)>,
#endif
typename = enable_if_t<std::is_member_pointer<decay_t<Fn>>::value>, int = 0>
constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(std::mem_fn(f)(std::forward<Args>(args)...)))
-> decltype(std::mem_fn(f)(std::forward<Args>(args)...)) {
return std::mem_fn(f)(std::forward<Args>(args)...);
}
template <typename Fn, typename... Args, typename = enable_if_t<!std::is_member_pointer<decay_t<Fn>>::value>>
constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(std::forward<Fn>(f)(std::forward<Args>(args)...)))
-> decltype(std::forward<Fn>(f)(std::forward<Args>(args)...)) {
return std::forward<Fn>(f)(std::forward<Args>(args)...);
}
// std::invoke_result from C++17
template <class F, class, class... Us>
struct invoke_result_impl;
template <class F, class... Us>
struct invoke_result_impl<F, decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...), void()), Us...> {
using type = decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...));
};
template <class F, class... Us>
using invoke_result = invoke_result_impl<F, void, Us...>;
template <class F, class... Us>
using invoke_result_t = typename invoke_result<F, Us...>::type;
#endif
// std::void_t from C++17
template <class...>
struct voider {
using type = void;
};
template <class... Ts>
using void_t = typename voider<Ts...>::type;
// Trait for checking if a type is a sol::optional
template <class T>
struct is_optional_impl : std::false_type {};
template <class T>
struct is_optional_impl<optional<T>> : std::true_type {};
template <class T>
using is_optional = is_optional_impl<decay_t<T>>;
// Change void to sol::monostate
template <class U>
using fixup_void = conditional_t<std::is_void<U>::value, monostate, U>;
template <class F, class U, class = invoke_result_t<F, U>>
using get_map_return = optional<fixup_void<invoke_result_t<F, U>>>;
// Check if invoking F for some Us returns void
template <class F, class = void, class... U>
struct returns_void_impl;
template <class F, class... U>
struct returns_void_impl<F, void_t<invoke_result_t<F, U...>>, U...> : std::is_void<invoke_result_t<F, U...>> {};
template <class F, class... U>
using returns_void = returns_void_impl<F, void, U...>;
template <class T, class... U>
using enable_if_ret_void = enable_if_t<returns_void<T&&, U...>::value>;
template <class T, class... U>
using disable_if_ret_void = enable_if_t<!returns_void<T&&, U...>::value>;
template <class T, class U>
using enable_forward_value = detail::enable_if_t<std::is_constructible<T, U&&>::value && !std::is_same<detail::decay_t<U>, in_place_t>::value
&& !std::is_same<optional<T>, detail::decay_t<U>>::value>;
template <class T, class U, class Other>
using enable_from_other = detail::enable_if_t<std::is_constructible<T, Other>::value && !std::is_constructible<T, optional<U>&>::value
&& !std::is_constructible<T, optional<U>&&>::value && !std::is_constructible<T, const optional<U>&>::value
&& !std::is_constructible<T, const optional<U>&&>::value && !std::is_convertible<optional<U>&, T>::value
&& !std::is_convertible<optional<U>&&, T>::value && !std::is_convertible<const optional<U>&, T>::value
&& !std::is_convertible<const optional<U>&&, T>::value>;
template <class T, class U>
using enable_assign_forward = detail::enable_if_t<!std::is_same<optional<T>, detail::decay_t<U>>::value
&& !detail::conjunction<std::is_scalar<T>, std::is_same<T, detail::decay_t<U>>>::value && std::is_constructible<T, U>::value
&& std::is_assignable<T&, U>::value>;
template <class T, class U, class Other>
using enable_assign_from_other = detail::enable_if_t<std::is_constructible<T, Other>::value && std::is_assignable<T&, Other>::value
&& !std::is_constructible<T, optional<U>&>::value && !std::is_constructible<T, optional<U>&&>::value
&& !std::is_constructible<T, const optional<U>&>::value && !std::is_constructible<T, const optional<U>&&>::value
&& !std::is_convertible<optional<U>&, T>::value && !std::is_convertible<optional<U>&&, T>::value
&& !std::is_convertible<const optional<U>&, T>::value && !std::is_convertible<const optional<U>&&, T>::value
&& !std::is_assignable<T&, optional<U>&>::value && !std::is_assignable<T&, optional<U>&&>::value
&& !std::is_assignable<T&, const optional<U>&>::value && !std::is_assignable<T&, const optional<U>&&>::value>;
#ifdef _MSC_VER
// TODO make a version which works with MSVC
template <class T, class U = T>
struct is_swappable : std::true_type {};
template <class T, class U = T>
struct is_nothrow_swappable : std::true_type {};
#else
// https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept
namespace swap_adl_tests {
// if swap ADL finds this then it would call std::swap otherwise (same
// signature)
struct tag {};
template <class T>
tag swap(T&, T&);
template <class T, std::size_t N>
tag swap(T (&a)[N], T (&b)[N]);
// helper functions to test if an unqualified swap is possible, and if it
// becomes std::swap
template <class, class>
std::false_type can_swap(...) noexcept(false);
template <class T, class U, class = decltype(swap(std::declval<T&>(), std::declval<U&>()))>
std::true_type can_swap(int) noexcept(noexcept(swap(std::declval<T&>(), std::declval<U&>())));
template <class, class>
std::false_type uses_std(...);
template <class T, class U>
std::is_same<decltype(swap(std::declval<T&>(), std::declval<U&>())), tag> uses_std(int);
template <class T>
struct is_std_swap_noexcept
: std::integral_constant<bool, std::is_nothrow_move_constructible<T>::value && std::is_nothrow_move_assignable<T>::value> {};
template <class T, std::size_t N>
struct is_std_swap_noexcept<T[N]> : is_std_swap_noexcept<T> {};
template <class T, class U>
struct is_adl_swap_noexcept : std::integral_constant<bool, noexcept(can_swap<T, U>(0))> {};
} // namespace swap_adl_tests
template <class T, class U = T>
struct is_swappable : std::integral_constant<bool,
decltype(detail::swap_adl_tests::can_swap<T, U>(0))::value
&& (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value
|| (std::is_move_assignable<T>::value && std::is_move_constructible<T>::value))> {};
template <class T, std::size_t N>
struct is_swappable<T[N], T[N]> : std::integral_constant<bool,
decltype(detail::swap_adl_tests::can_swap<T[N], T[N]>(0))::value
&& (!decltype(detail::swap_adl_tests::uses_std<T[N], T[N]>(0))::value || is_swappable<T, T>::value)> {};
template <class T, class U = T>
struct is_nothrow_swappable
: std::integral_constant<bool,
is_swappable<T, U>::value
&& ((decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value&& detail::swap_adl_tests::is_std_swap_noexcept<T>::value)
|| (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value&& detail::swap_adl_tests::is_adl_swap_noexcept<T, U>::value))> {};
#endif
// The storage base manages the actual storage, and correctly propagates
// trivial destruction from T. This case is for when T is not trivially
// destructible.
template <class T, bool = ::std::is_trivially_destructible<T>::value>
struct optional_storage_base {
SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) {
}
template <class... U>
SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U&&... u) : m_value(std::forward<U>(u)...), m_has_value(true) {
}
~optional_storage_base() {
if (m_has_value) {
m_value.~T();
m_has_value = false;
}
}
struct dummy {};
union {
dummy m_dummy;
T m_value;
};
bool m_has_value;
};
// This case is for when T is trivially destructible.
template <class T>
struct optional_storage_base<T, true> {
SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) {
}
template <class... U>
SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U&&... u) : m_value(std::forward<U>(u)...), m_has_value(true) {
}
// No destructor, so this class is trivially destructible
struct dummy {};
union {
dummy m_dummy;
T m_value;
};
bool m_has_value = false;
};
// This base class provides some handy member functions which can be used in
// further derived classes
template <class T>
struct optional_operations_base : optional_storage_base<T> {
using optional_storage_base<T>::optional_storage_base;
void hard_reset() noexcept {
get().~T();
this->m_has_value = false;
}
template <class... Args>
void construct(Args&&... args) noexcept {
new (std::addressof(this->m_value)) T(std::forward<Args>(args)...);
this->m_has_value = true;
}
template <class Opt>
void assign(Opt&& rhs) {
if (this->has_value()) {
if (rhs.has_value()) {
this->m_value = std::forward<Opt>(rhs).get();
}
else {
this->m_value.~T();
this->m_has_value = false;
}
}
else if (rhs.has_value()) {
construct(std::forward<Opt>(rhs).get());
}
}
bool has_value() const {
return this->m_has_value;
}
SOL_TL_OPTIONAL_11_CONSTEXPR T& get() & {
return this->m_value;
}
SOL_TL_OPTIONAL_11_CONSTEXPR const T& get() const& {
return this->m_value;
}
SOL_TL_OPTIONAL_11_CONSTEXPR T&& get() && {
return std::move(this->m_value);
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
constexpr const T&& get() const&& {
return std::move(this->m_value);
}
#endif
};
// This class manages conditionally having a trivial copy constructor
// This specialization is for when T is trivially copy constructible
template <class T, bool = SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)>
struct optional_copy_base : optional_operations_base<T> {
using optional_operations_base<T>::optional_operations_base;
};
// This specialization is for when T is not trivially copy constructible
template <class T>
struct optional_copy_base<T, false> : optional_operations_base<T> {
using base_t = optional_operations_base<T>;
using base_t::base_t;
optional_copy_base() = default;
optional_copy_base(const optional_copy_base& rhs) : base_t() {
if (rhs.has_value()) {
this->construct(rhs.get());
}
else {
this->m_has_value = false;
}
}
optional_copy_base(optional_copy_base&& rhs) = default;
optional_copy_base& operator=(const optional_copy_base& rhs) = default;
optional_copy_base& operator=(optional_copy_base&& rhs) = default;
};
#ifndef SOL_TL_OPTIONAL_GCC49
template <class T, bool = std::is_trivially_move_constructible<T>::value>
struct optional_move_base : optional_copy_base<T> {
using optional_copy_base<T>::optional_copy_base;
};
#else
template <class T, bool = false>
struct optional_move_base;
#endif
template <class T>
struct optional_move_base<T, false> : optional_copy_base<T> {
using optional_copy_base<T>::optional_copy_base;
optional_move_base() = default;
optional_move_base(const optional_move_base& rhs) = default;
optional_move_base(optional_move_base&& rhs) noexcept(std::is_nothrow_move_constructible<T>::value) {
if (rhs.has_value()) {
this->construct(std::move(rhs.get()));
}
else {
this->m_has_value = false;
}
}
optional_move_base& operator=(const optional_move_base& rhs) = default;
optional_move_base& operator=(optional_move_base&& rhs) = default;
};
// This class manages conditionally having a trivial copy assignment operator
template <class T,
bool = SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) && SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)
&& SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T)>
struct optional_copy_assign_base : optional_move_base<T> {
using optional_move_base<T>::optional_move_base;
};
template <class T>
struct optional_copy_assign_base<T, false> : optional_move_base<T> {
using optional_move_base<T>::optional_move_base;
optional_copy_assign_base() = default;
optional_copy_assign_base(const optional_copy_assign_base& rhs) = default;
optional_copy_assign_base(optional_copy_assign_base&& rhs) = default;
optional_copy_assign_base& operator=(const optional_copy_assign_base& rhs) {
this->assign(rhs);
return *this;
}
optional_copy_assign_base& operator=(optional_copy_assign_base&& rhs) = default;
};
#ifndef SOL_TL_OPTIONAL_GCC49
template <class T,
bool = std::is_trivially_destructible<T>::value&& std::is_trivially_move_constructible<T>::value&& std::is_trivially_move_assignable<T>::value>
struct optional_move_assign_base : optional_copy_assign_base<T> {
using optional_copy_assign_base<T>::optional_copy_assign_base;
};
#else
template <class T, bool = false>
struct optional_move_assign_base;
#endif
template <class T>
struct optional_move_assign_base<T, false> : optional_copy_assign_base<T> {
using optional_copy_assign_base<T>::optional_copy_assign_base;
optional_move_assign_base() = default;
optional_move_assign_base(const optional_move_assign_base& rhs) = default;
optional_move_assign_base(optional_move_assign_base&& rhs) = default;
optional_move_assign_base& operator=(const optional_move_assign_base& rhs) = default;
optional_move_assign_base& operator=(optional_move_assign_base&& rhs) noexcept(
std::is_nothrow_move_constructible<T>::value&& std::is_nothrow_move_assignable<T>::value) {
this->assign(std::move(rhs));
return *this;
}
};
// optional_delete_ctor_base will conditionally delete copy and move
// constructors depending on whether T is copy/move constructible
template <class T, bool EnableCopy = std::is_copy_constructible<T>::value, bool EnableMove = std::is_move_constructible<T>::value>
struct optional_delete_ctor_base {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base&) = default;
optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default;
optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
};
template <class T>
struct optional_delete_ctor_base<T, true, false> {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base&) = default;
optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete;
optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
};
template <class T>
struct optional_delete_ctor_base<T, false, true> {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base&) = delete;
optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default;
optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
};
template <class T>
struct optional_delete_ctor_base<T, false, false> {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base&) = delete;
optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete;
optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
};
// optional_delete_assign_base will conditionally delete copy and move
// constructors depending on whether T is copy/move constructible + assignable
template <class T, bool EnableCopy = (std::is_copy_constructible<T>::value && std::is_copy_assignable<T>::value),
bool EnableMove = (std::is_move_constructible<T>::value && std::is_move_assignable<T>::value)>
struct optional_delete_assign_base {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base&) = default;
optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default;
optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default;
};
template <class T>
struct optional_delete_assign_base<T, true, false> {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base&) = default;
optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default;
optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete;
};
template <class T>
struct optional_delete_assign_base<T, false, true> {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base&) = default;
optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete;
optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default;
};
template <class T>
struct optional_delete_assign_base<T, false, false> {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base&) = default;
optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete;
optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete;
};
} // namespace detail
/// \brief A tag type to represent an empty optional
using nullopt_t = std::nullopt_t;
/// \brief Represents an empty optional
/// \synopsis static constexpr nullopt_t nullopt;
///
/// *Examples*:
/// ```
/// sol::optional<int> a = sol::nullopt;
/// void foo (sol::optional<int>);
/// foo(sol::nullopt); //pass an empty optional
/// ```
using std::nullopt;
class bad_optional_access : public std::exception {
public:
bad_optional_access() = default;
const char* what() const noexcept {
return "Optional has no value";
}
};
/// An optional object is an object that contains the storage for another
/// object and manages the lifetime of this contained object, if any. The
/// contained object may be initialized after the optional object has been
/// initialized, and may be destroyed before the optional object has been
/// destroyed. The initialization state of the contained object is tracked by
/// the optional object.
template <class T>
class optional : private detail::optional_move_assign_base<T>,
private detail::optional_delete_ctor_base<T>,
private detail::optional_delete_assign_base<T> {
using base = detail::optional_move_assign_base<T>;
static_assert(!std::is_same<T, in_place_t>::value, "instantiation of optional with in_place_t is ill-formed");
static_assert(!std::is_same<detail::decay_t<T>, nullopt_t>::value, "instantiation of optional with nullopt_t is ill-formed");
public:
#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
/// \group and_then
/// Carries out some operation which returns an optional on the stored
/// object if there is one. \requires `std::invoke(std::forward<F>(f),
/// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be
/// the result of `std::invoke(std::forward<F>(f), value())`. Returns a
/// `std::optional<U>`. The return value is empty if `*this` is empty,
/// otherwise the return value of `std::invoke(std::forward<F>(f), value())`
/// is returned.
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) & {
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) && {
using result = detail::invoke_result_t<F, T&&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
}
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &;
template <class F>
constexpr auto and_then(F&& f) const& {
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&;
template <class F>
constexpr auto and_then(F&& f) const&& {
using result = detail::invoke_result_t<F, const T&&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
}
#endif
#else
/// \group and_then
/// Carries out some operation which returns an optional on the stored
/// object if there is one. \requires `std::invoke(std::forward<F>(f),
/// value())` returns a `std::optional<U>` for some `U`.
/// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
/// value())`. Returns a `std::optional<U>`. The return value is empty if
/// `*this` is empty, otherwise the return value of
/// `std::invoke(std::forward<F>(f), value())` is returned.
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) & {
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&&> and_then(F&& f) && {
using result = detail::invoke_result_t<F, T&&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
}
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &;
template <class F>
constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const& {
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&;
template <class F>
constexpr detail::invoke_result_t<F, const T&&> and_then(F&& f) const&& {
using result = detail::invoke_result_t<F, const T&&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
}
#endif
#endif
#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
/// \brief Carries out some operation on the stored object if there is one.
/// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
/// value())`. Returns a `std::optional<U>`. The return value is empty if
/// `*this` is empty, otherwise an `optional<U>` is constructed from the
/// return value of `std::invoke(std::forward<F>(f), value())` and is
/// returned.
///
/// \group map
/// \synopsis template <class F> constexpr auto map(F &&f) &;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) & {
return optional_map_impl(*this, std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> constexpr auto map(F &&f) &&;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) && {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> constexpr auto map(F &&f) const&;
template <class F>
constexpr auto map(F&& f) const& {
return optional_map_impl(*this, std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> constexpr auto map(F &&f) const&&;
template <class F>
constexpr auto map(F&& f) const&& {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
#else
/// \brief Carries out some operation on the stored object if there is one.
/// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
/// value())`. Returns a `std::optional<U>`. The return value is empty if
/// `*this` is empty, otherwise an `optional<U>` is constructed from the
/// return value of `std::invoke(std::forward<F>(f), value())` and is
/// returned.
///
/// \group map
/// \synopsis template <class F> auto map(F &&f) &;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&>(), std::declval<F&&>())) map(F&& f) & {
return optional_map_impl(*this, std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> auto map(F &&f) &&;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&&>(), std::declval<F&&>())) map(F&& f) && {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> auto map(F &&f) const&;
template <class F>
constexpr decltype(optional_map_impl(std::declval<const optional&>(), std::declval<F&&>())) map(F&& f) const& {
return optional_map_impl(*this, std::forward<F>(f));
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group map
/// \synopsis template <class F> auto map(F &&f) const&&;
template <class F>
constexpr decltype(optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>())) map(F&& f) const&& {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
#endif
#endif
/// \brief Calls `f` if the optional is empty
/// \requires `std::invoke_result_t<F>` must be void or convertible to
/// `optional<T>`.
/// \effects If `*this` has a value, returns `*this`.
/// Otherwise, if `f` returns `void`, calls `std::forward<F>(f)` and returns
/// `std::nullopt`. Otherwise, returns `std::forward<F>(f)()`.
///
/// \group or_else
/// \synopsis template <class F> optional<T> or_else (F &&f) &;
template <class F, detail::enable_if_ret_void<F>* = nullptr>
optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
if (has_value())
return *this;
std::forward<F>(f)();
return nullopt;
}
/// \exclude
template <class F, detail::disable_if_ret_void<F>* = nullptr>
optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
return has_value() ? *this : std::forward<F>(f)();
}
/// \group or_else
/// \synopsis template <class F> optional<T> or_else (F &&f) &&;
template <class F, detail::enable_if_ret_void<F>* = nullptr>
optional<T> or_else(F&& f) && {
if (has_value())
return std::move(*this);
std::forward<F>(f)();
return nullopt;
}
/// \exclude
template <class F, detail::disable_if_ret_void<F>* = nullptr>
optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) && {
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
/// \group or_else
/// \synopsis template <class F> optional<T> or_else (F &&f) const &;
template <class F, detail::enable_if_ret_void<F>* = nullptr>
optional<T> or_else(F&& f) const& {
if (has_value())
return *this;
std::forward<F>(f)();
return nullopt;
}
/// \exclude
template <class F, detail::disable_if_ret_void<F>* = nullptr>
optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) const& {
return has_value() ? *this : std::forward<F>(f)();
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \exclude
template <class F, detail::enable_if_ret_void<F>* = nullptr>
optional<T> or_else(F&& f) const&& {
if (has_value())
return std::move(*this);
std::forward<F>(f)();
return nullopt;
}
/// \exclude
template <class F, detail::disable_if_ret_void<F>* = nullptr>
optional<T> or_else(F&& f) const&& {
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
#endif
/// \brief Maps the stored value with `f` if there is one, otherwise returns
/// `u`.
///
/// \details If there is a value stored, then `f` is called with `**this`
/// and the value is returned. Otherwise `u` is returned.
///
/// \group map_or
template <class F, class U>
U map_or(F&& f, U&& u) & {
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
}
/// \group map_or
template <class F, class U>
U map_or(F&& f, U&& u) && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
}
/// \group map_or
template <class F, class U>
U map_or(F&& f, U&& u) const& {
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group map_or
template <class F, class U>
U map_or(F&& f, U&& u) const&& {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
}
#endif
/// \brief Maps the stored value with `f` if there is one, otherwise calls
/// `u` and returns the result.
///
/// \details If there is a value stored, then `f` is
/// called with `**this` and the value is returned. Otherwise
/// `std::forward<U>(u)()` is returned.
///
/// \group map_or_else
/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) &;
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F&& f, U&& u) & {
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
}
/// \group map_or_else
/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
/// &&;
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F&& f, U&& u) && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
}
/// \group map_or_else
/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
/// const &;
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const& {
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group map_or_else
/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
/// const &&;
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&& {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
}
#endif
/// \returns `u` if `*this` has a value, otherwise an empty optional.
template <class U>
constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const {
using result = optional<detail::decay_t<U>>;
return has_value() ? result { u } : result { nullopt };
}
/// \returns `rhs` if `*this` is empty, otherwise the current value.
/// \group disjunction
SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) & {
return has_value() ? *this : rhs;
}
/// \group disjunction
constexpr optional disjunction(const optional& rhs) const& {
return has_value() ? *this : rhs;
}
/// \group disjunction
SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) && {
return has_value() ? std::move(*this) : rhs;
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group disjunction
constexpr optional disjunction(const optional& rhs) const&& {
return has_value() ? std::move(*this) : rhs;
}
#endif
/// \group disjunction
SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) & {
return has_value() ? *this : std::move(rhs);
}
/// \group disjunction
constexpr optional disjunction(optional&& rhs) const& {
return has_value() ? *this : std::move(rhs);
}
/// \group disjunction
SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) && {
return has_value() ? std::move(*this) : std::move(rhs);
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group disjunction
constexpr optional disjunction(optional&& rhs) const&& {
return has_value() ? std::move(*this) : std::move(rhs);
}
#endif
/// Takes the value out of the optional, leaving it empty
/// \group take
optional take() & {
optional ret = *this;
reset();
return ret;
}
/// \group take
optional take() const& {
optional ret = *this;
reset();
return ret;
}
/// \group take
optional take() && {
optional ret = std::move(*this);
reset();
return ret;
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group take
optional take() const&& {
optional ret = std::move(*this);
reset();
return ret;
}
#endif
using value_type = T;
/// Constructs an optional that does not contain a value.
/// \group ctor_empty
constexpr optional() noexcept = default;
/// \group ctor_empty
constexpr optional(nullopt_t) noexcept {
}
/// Copy constructor
///
/// If `rhs` contains a value, the stored value is direct-initialized with
/// it. Otherwise, the constructed optional is empty.
SOL_TL_OPTIONAL_11_CONSTEXPR optional(const optional& rhs) = default;
/// Move constructor
///
/// If `rhs` contains a value, the stored value is direct-initialized with
/// it. Otherwise, the constructed optional is empty.
SOL_TL_OPTIONAL_11_CONSTEXPR optional(optional&& rhs) = default;
/// Constructs the stored value in-place using the given arguments.
/// \group in_place
/// \synopsis template <class... Args> constexpr explicit optional(in_place_t, Args&&... args);
template <class... Args>
constexpr explicit optional(detail::enable_if_t<std::is_constructible<T, Args...>::value, in_place_t>, Args&&... args)
: base(in_place, std::forward<Args>(args)...) {
}
/// \group in_place
/// \synopsis template <class U, class... Args>\nconstexpr explicit optional(in_place_t, std::initializer_list<U>&, Args&&... args);
template <class U, class... Args>
SOL_TL_OPTIONAL_11_CONSTEXPR explicit optional(detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, in_place_t>,
std::initializer_list<U> il, Args&&... args) {
this->construct(il, std::forward<Args>(args)...);
}
#if 0 // SOL_MODIFICATION
/// Constructs the stored value with `u`.
/// \synopsis template <class U=T> constexpr optional(U &&u);
template <class U = T, detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr, detail::enable_forward_value<T, U>* = nullptr>
constexpr optional(U&& u) : base(in_place, std::forward<U>(u)) {
}
/// \exclude
template <class U = T, detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr, detail::enable_forward_value<T, U>* = nullptr>
constexpr explicit optional(U&& u) : base(in_place, std::forward<U>(u)) {
}
#else
/// Constructs the stored value with `u`.
/// \synopsis template <class U=T> constexpr optional(U &&u);
constexpr optional(T&& u) : base(in_place, std::move(u)) {
}
/// \exclude
constexpr optional(const T& u) : base(in_place, u) {
}
#endif // sol3 modification
/// Converting copy constructor.
/// \synopsis template <class U> optional(const optional<U> &rhs);
template <class U, detail::enable_from_other<T, U, const U&>* = nullptr, detail::enable_if_t<std::is_convertible<const U&, T>::value>* = nullptr>
optional(const optional<U>& rhs) {
if (rhs.has_value()) {
this->construct(*rhs);
}
}
/// \exclude
template <class U, detail::enable_from_other<T, U, const U&>* = nullptr, detail::enable_if_t<!std::is_convertible<const U&, T>::value>* = nullptr>
explicit optional(const optional<U>& rhs) {
if (rhs.has_value()) {
this->construct(*rhs);
}
}
/// Converting move constructor.
/// \synopsis template <class U> optional(optional<U> &&rhs);
template <class U, detail::enable_from_other<T, U, U&&>* = nullptr, detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr>
optional(optional<U>&& rhs) {
if (rhs.has_value()) {
this->construct(std::move(*rhs));
}
}
/// \exclude
template <class U, detail::enable_from_other<T, U, U&&>* = nullptr, detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr>
explicit optional(optional<U>&& rhs) {
this->construct(std::move(*rhs));
}
/// Destroys the stored value if there is one.
~optional() = default;
/// Assignment to empty.
///
/// Destroys the current value if there is one.
optional& operator=(nullopt_t) noexcept {
if (has_value()) {
this->m_value.~T();
this->m_has_value = false;
}
return *this;
}
/// Copy assignment.
///
/// Copies the value from `rhs` if there is one. Otherwise resets the stored
/// value in `*this`.
optional& operator=(const optional& rhs) = default;
/// Move assignment.
///
/// Moves the value from `rhs` if there is one. Otherwise resets the stored
/// value in `*this`.
optional& operator=(optional&& rhs) = default;
/// Assigns the stored value from `u`, destroying the old value if there was
/// one.
/// \synopsis optional &operator=(U &&u);
template <class U = T, detail::enable_assign_forward<T, U>* = nullptr>
optional& operator=(U&& u) {
if (has_value()) {
this->m_value = std::forward<U>(u);
}
else {
this->construct(std::forward<U>(u));
}
return *this;
}
/// Converting copy assignment operator.
///
/// Copies the value from `rhs` if there is one. Otherwise resets the stored
/// value in `*this`.
/// \synopsis optional &operator=(const optional<U> & rhs);
template <class U, detail::enable_assign_from_other<T, U, const U&>* = nullptr>
optional& operator=(const optional<U>& rhs) {
if (has_value()) {
if (rhs.has_value()) {
this->m_value = *rhs;
}
else {
this->hard_reset();
}
}
if (rhs.has_value()) {
this->construct(*rhs);
}
return *this;
}
// TODO check exception guarantee
/// Converting move assignment operator.
///
/// Moves the value from `rhs` if there is one. Otherwise resets the stored
/// value in `*this`.
/// \synopsis optional &operator=(optional<U> && rhs);
template <class U, detail::enable_assign_from_other<T, U, U>* = nullptr>
optional& operator=(optional<U>&& rhs) {
if (has_value()) {
if (rhs.has_value()) {
this->m_value = std::move(*rhs);
}
else {
this->hard_reset();
}
}
if (rhs.has_value()) {
this->construct(std::move(*rhs));
}
return *this;
}
/// Constructs the value in-place, destroying the current one if there is
/// one.
/// \group emplace
template <class... Args>
T& emplace(Args&&... args) {
static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args");
*this = nullopt;
this->construct(std::forward<Args>(args)...);
return value();
}
/// \group emplace
/// \synopsis template <class U, class... Args>\nT& emplace(std::initializer_list<U> il, Args &&... args);
template <class U, class... Args>
detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, T&> emplace(std::initializer_list<U> il, Args&&... args) {
*this = nullopt;
this->construct(il, std::forward<Args>(args)...);
return value();
}
/// Swaps this optional with the other.
///
/// If neither optionals have a value, nothing happens.
/// If both have a value, the values are swapped.
/// If one has a value, it is moved to the other and the movee is left
/// valueless.
void swap(optional& rhs) noexcept(std::is_nothrow_move_constructible<T>::value&& detail::is_nothrow_swappable<T>::value) {
if (has_value()) {
if (rhs.has_value()) {
using std::swap;
swap(**this, *rhs);
}
else {
new (std::addressof(rhs.m_value)) T(std::move(this->m_value));
this->m_value.T::~T();
}
}
else if (rhs.has_value()) {
new (std::addressof(this->m_value)) T(std::move(rhs.m_value));
rhs.m_value.T::~T();
}
}
/// \returns a pointer to the stored value
/// \requires a value is stored
/// \group pointer
/// \synopsis constexpr const T *operator->() const;
constexpr const T* operator->() const {
return std::addressof(this->m_value);
}
/// \group pointer
/// \synopsis constexpr T *operator->();
SOL_TL_OPTIONAL_11_CONSTEXPR T* operator->() {
return std::addressof(this->m_value);
}
/// \returns the stored value
/// \requires a value is stored
/// \group deref
/// \synopsis constexpr T &operator*();
SOL_TL_OPTIONAL_11_CONSTEXPR T& operator*() & {
return this->m_value;
}
/// \group deref
/// \synopsis constexpr const T &operator*() const;
constexpr const T& operator*() const& {
return this->m_value;
}
/// \exclude
SOL_TL_OPTIONAL_11_CONSTEXPR T&& operator*() && {
return std::move(this->m_value);
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \exclude
constexpr const T&& operator*() const&& {
return std::move(this->m_value);
}
#endif
/// \returns whether or not the optional has a value
/// \group has_value
constexpr bool has_value() const noexcept {
return this->m_has_value;
}
/// \group has_value
constexpr explicit operator bool() const noexcept {
return this->m_has_value;
}
/// \returns the contained value if there is one, otherwise throws
/// [bad_optional_access]
/// \group value
/// \synopsis constexpr T &value();
SOL_TL_OPTIONAL_11_CONSTEXPR T& value() & {
if (has_value())
return this->m_value;
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
std::abort();
#else
throw bad_optional_access();
#endif // No exceptions allowed
}
/// \group value
/// \synopsis constexpr const T &value() const;
SOL_TL_OPTIONAL_11_CONSTEXPR const T& value() const& {
if (has_value())
return this->m_value;
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
std::abort();
#else
throw bad_optional_access();
#endif // No exceptions allowed
}
/// \exclude
SOL_TL_OPTIONAL_11_CONSTEXPR T&& value() && {
if (has_value())
return std::move(this->m_value);
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
std::abort();
#else
throw bad_optional_access();
#endif // No exceptions allowed
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \exclude
SOL_TL_OPTIONAL_11_CONSTEXPR const T&& value() const&& {
if (has_value())
return std::move(this->m_value);
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
std::abort();
#else
throw bad_optional_access();
#endif // No exceptions allowed
}
#endif
/// \returns the stored value if there is one, otherwise returns `u`
/// \group value_or
template <class U>
constexpr T value_or(U&& u) const& {
static_assert(std::is_copy_constructible<T>::value && std::is_convertible<U&&, T>::value, "T must be copy constructible and convertible from U");
return has_value() ? **this : static_cast<T>(std::forward<U>(u));
}
/// \group value_or
template <class U>
SOL_TL_OPTIONAL_11_CONSTEXPR T value_or(U&& u) && {
static_assert(std::is_move_constructible<T>::value && std::is_convertible<U&&, T>::value, "T must be move constructible and convertible from U");
return has_value() ? **this : static_cast<T>(std::forward<U>(u));
}
/// Destroys the stored value if one exists, making the optional empty
void reset() noexcept {
if (has_value()) {
this->m_value.~T();
this->m_has_value = false;
}
}
}; // namespace sol
/// \group relop
/// \brief Compares two optional objects
/// \details If both optionals contain a value, they are compared with `T`s
/// relational operators. Otherwise `lhs` and `rhs` are equal only if they are
/// both empty, and `lhs` is less than `rhs` only if `rhs` is empty and `lhs`
/// is not.
template <class T, class U>
inline constexpr bool operator==(const optional<T>& lhs, const optional<U>& rhs) {
return lhs.has_value() == rhs.has_value() && (!lhs.has_value() || *lhs == *rhs);
}
/// \group relop
template <class T, class U>
inline constexpr bool operator!=(const optional<T>& lhs, const optional<U>& rhs) {
return lhs.has_value() != rhs.has_value() || (lhs.has_value() && *lhs != *rhs);
}
/// \group relop
template <class T, class U>
inline constexpr bool operator<(const optional<T>& lhs, const optional<U>& rhs) {
return rhs.has_value() && (!lhs.has_value() || *lhs < *rhs);
}
/// \group relop
template <class T, class U>
inline constexpr bool operator>(const optional<T>& lhs, const optional<U>& rhs) {
return lhs.has_value() && (!rhs.has_value() || *lhs > *rhs);
}
/// \group relop
template <class T, class U>
inline constexpr bool operator<=(const optional<T>& lhs, const optional<U>& rhs) {
return !lhs.has_value() || (rhs.has_value() && *lhs <= *rhs);
}
/// \group relop
template <class T, class U>
inline constexpr bool operator>=(const optional<T>& lhs, const optional<U>& rhs) {
return !rhs.has_value() || (lhs.has_value() && *lhs >= *rhs);
}
/// \group relop_nullopt
/// \brief Compares an optional to a `nullopt`
/// \details Equivalent to comparing the optional to an empty optional
template <class T>
inline constexpr bool operator==(const optional<T>& lhs, nullopt_t) noexcept {
return !lhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator==(nullopt_t, const optional<T>& rhs) noexcept {
return !rhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator!=(const optional<T>& lhs, nullopt_t) noexcept {
return lhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator!=(nullopt_t, const optional<T>& rhs) noexcept {
return rhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<(const optional<T>&, nullopt_t) noexcept {
return false;
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<(nullopt_t, const optional<T>& rhs) noexcept {
return rhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<=(const optional<T>& lhs, nullopt_t) noexcept {
return !lhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept {
return true;
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>(const optional<T>& lhs, nullopt_t) noexcept {
return lhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>(nullopt_t, const optional<T>&) noexcept {
return false;
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept {
return true;
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>=(nullopt_t, const optional<T>& rhs) noexcept {
return !rhs.has_value();
}
/// \group relop_t
/// \brief Compares the optional with a value.
/// \details If the optional has a value, it is compared with the other value
/// using `T`s relational operators. Otherwise, the optional is considered
/// less than the value.
template <class T, class U>
inline constexpr bool operator==(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? *lhs == rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator==(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs == *rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator!=(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? *lhs != rhs : true;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator!=(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs != *rhs : true;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? *lhs < rhs : true;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs < *rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<=(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? *lhs <= rhs : true;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<=(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs <= *rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? *lhs > rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs > *rhs : true;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>=(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? *lhs >= rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>=(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs >= *rhs : true;
}
/// \synopsis template <class T>\nvoid swap(optional<T> &lhs, optional<T> &rhs);
template <class T, detail::enable_if_t<std::is_move_constructible<T>::value>* = nullptr, detail::enable_if_t<detail::is_swappable<T>::value>* = nullptr>
void swap(optional<T>& lhs, optional<T>& rhs) noexcept(noexcept(lhs.swap(rhs))) {
return lhs.swap(rhs);
}
namespace detail {
struct i_am_secret {};
} // namespace detail
template <class T = detail::i_am_secret, class U, class Ret = detail::conditional_t<std::is_same<T, detail::i_am_secret>::value, detail::decay_t<U>, T>>
inline constexpr optional<Ret> make_optional(U&& v) {
return optional<Ret>(std::forward<U>(v));
}
template <class T, class... Args>
inline constexpr optional<T> make_optional(Args&&... args) {
return optional<T>(in_place, std::forward<Args>(args)...);
}
template <class T, class U, class... Args>
inline constexpr optional<T> make_optional(std::initializer_list<U> il, Args&&... args) {
return optional<T>(in_place, il, std::forward<Args>(args)...);
}
#if __cplusplus >= 201703L
template <class T>
optional(T)->optional<T>;
#endif
/// \exclude
namespace detail {
#ifdef SOL_TL_OPTIONAL_CXX14
template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr>
constexpr auto optional_map_impl(Opt&& opt, F&& f) {
return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt);
}
template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
detail::enable_if_t<std::is_void<Ret>::value>* = nullptr>
auto optional_map_impl(Opt&& opt, F&& f) {
if (opt.has_value()) {
detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
return make_optional(monostate {});
}
return optional<monostate>(nullopt);
}
#else
template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr>
constexpr auto optional_map_impl(Opt&& opt, F&& f) -> optional<Ret> {
return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt);
}
template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
detail::enable_if_t<std::is_void<Ret>::value>* = nullptr>
auto optional_map_impl(Opt&& opt, F&& f) -> optional<monostate> {
if (opt.has_value()) {
detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
return monostate {};
}
return nullopt;
}
#endif
} // namespace detail
/// Specialization for when `T` is a reference. `optional<T&>` acts similarly
/// to a `T*`, but provides more operations and shows intent more clearly.
///
/// *Examples*:
///
/// ```
/// int i = 42;
/// sol::optional<int&> o = i;
/// *o == 42; //true
/// i = 12;
/// *o = 12; //true
/// &*o == &i; //true
/// ```
///
/// Assignment has rebind semantics rather than assign-through semantics:
///
/// ```
/// int j = 8;
/// o = j;
///
/// &*o == &j; //true
/// ```
template <class T>
class optional<T&> {
public:
#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
/// \group and_then
/// Carries out some operation which returns an optional on the stored
/// object if there is one. \requires `std::invoke(std::forward<F>(f),
/// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be
/// the result of `std::invoke(std::forward<F>(f), value())`. Returns a
/// `std::optional<U>`. The return value is empty if `*this` is empty,
/// otherwise the return value of `std::invoke(std::forward<F>(f), value())`
/// is returned.
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) & {
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) && {
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &;
template <class F>
constexpr auto and_then(F&& f) const& {
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&;
template <class F>
constexpr auto and_then(F&& f) const&& {
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
#endif
#else
/// \group and_then
/// Carries out some operation which returns an optional on the stored
/// object if there is one. \requires `std::invoke(std::forward<F>(f),
/// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be
/// the result of `std::invoke(std::forward<F>(f), value())`. Returns a
/// `std::optional<U>`. The return value is empty if `*this` is empty,
/// otherwise the return value of `std::invoke(std::forward<F>(f), value())`
/// is returned.
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) & {
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) && {
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &;
template <class F>
constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const& {
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group and_then
/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&;
template <class F>
constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const&& {
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
#endif
#endif
#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
/// \brief Carries out some operation on the stored object if there is one.
/// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
/// value())`. Returns a `std::optional<U>`. The return value is empty if
/// `*this` is empty, otherwise an `optional<U>` is constructed from the
/// return value of `std::invoke(std::forward<F>(f), value())` and is
/// returned.
///
/// \group map
/// \synopsis template <class F> constexpr auto map(F &&f) &;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) & {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> constexpr auto map(F &&f) &&;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) && {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> constexpr auto map(F &&f) const&;
template <class F>
constexpr auto map(F&& f) const& {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> constexpr auto map(F &&f) const&&;
template <class F>
constexpr auto map(F&& f) const&& {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
#else
/// \brief Carries out some operation on the stored object if there is one.
/// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
/// value())`. Returns a `std::optional<U>`. The return value is empty if
/// `*this` is empty, otherwise an `optional<U>` is constructed from the
/// return value of `std::invoke(std::forward<F>(f), value())` and is
/// returned.
///
/// \group map
/// \synopsis template <class F> auto map(F &&f) &;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&>(), std::declval<F&&>())) map(F&& f) & {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> auto map(F &&f) &&;
template <class F>
SOL_TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&&>(), std::declval<F&&>())) map(F&& f) && {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> auto map(F &&f) const&;
template <class F>
constexpr decltype(detail::optional_map_impl(std::declval<const optional&>(), std::declval<F&&>())) map(F&& f) const& {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group map
/// \synopsis template <class F> auto map(F &&f) const&&;
template <class F>
constexpr decltype(detail::optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>())) map(F&& f) const&& {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
#endif
#endif
/// \brief Calls `f` if the optional is empty
/// \requires `std::invoke_result_t<F>` must be void or convertible to
/// `optional<T>`. \effects If `*this` has a value, returns `*this`.
/// Otherwise, if `f` returns `void`, calls `std::forward<F>(f)` and returns
/// `std::nullopt`. Otherwise, returns `std::forward<F>(f)()`.
///
/// \group or_else
/// \synopsis template <class F> optional<T> or_else (F &&f) &;
template <class F, detail::enable_if_ret_void<F>* = nullptr>
optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
if (has_value())
return *this;
std::forward<F>(f)();
return nullopt;
}
/// \exclude
template <class F, detail::disable_if_ret_void<F>* = nullptr>
optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
return has_value() ? *this : std::forward<F>(f)();
}
/// \group or_else
/// \synopsis template <class F> optional<T> or_else (F &&f) &&;
template <class F, detail::enable_if_ret_void<F>* = nullptr>
optional<T> or_else(F&& f) && {
if (has_value())
return std::move(*this);
std::forward<F>(f)();
return nullopt;
}
/// \exclude
template <class F, detail::disable_if_ret_void<F>* = nullptr>
optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) && {
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
/// \group or_else
/// \synopsis template <class F> optional<T> or_else (F &&f) const &;
template <class F, detail::enable_if_ret_void<F>* = nullptr>
optional<T> or_else(F&& f) const& {
if (has_value())
return *this;
std::forward<F>(f)();
return nullopt;
}
/// \exclude
template <class F, detail::disable_if_ret_void<F>* = nullptr>
optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) const& {
return has_value() ? *this : std::forward<F>(f)();
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \exclude
template <class F, detail::enable_if_ret_void<F>* = nullptr>
optional<T> or_else(F&& f) const&& {
if (has_value())
return std::move(*this);
std::forward<F>(f)();
return nullopt;
}
/// \exclude
template <class F, detail::disable_if_ret_void<F>* = nullptr>
optional<T> or_else(F&& f) const&& {
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
#endif
/// \brief Maps the stored value with `f` if there is one, otherwise returns
/// `u`.
///
/// \details If there is a value stored, then `f` is called with `**this`
/// and the value is returned. Otherwise `u` is returned.
///
/// \group map_or
template <class F, class U>
U map_or(F&& f, U&& u) & {
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
}
/// \group map_or
template <class F, class U>
U map_or(F&& f, U&& u) && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
}
/// \group map_or
template <class F, class U>
U map_or(F&& f, U&& u) const& {
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group map_or
template <class F, class U>
U map_or(F&& f, U&& u) const&& {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
}
#endif
/// \brief Maps the stored value with `f` if there is one, otherwise calls
/// `u` and returns the result.
///
/// \details If there is a value stored, then `f` is
/// called with `**this` and the value is returned. Otherwise
/// `std::forward<U>(u)()` is returned.
///
/// \group map_or_else
/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) &;
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F&& f, U&& u) & {
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
}
/// \group map_or_else
/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
/// &&;
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F&& f, U&& u) && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
}
/// \group map_or_else
/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
/// const &;
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const& {
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group map_or_else
/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
/// const &&;
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&& {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
}
#endif
/// \returns `u` if `*this` has a value, otherwise an empty optional.
template <class U>
constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const {
using result = optional<detail::decay_t<U>>;
return has_value() ? result { u } : result { nullopt };
}
/// \returns `rhs` if `*this` is empty, otherwise the current value.
/// \group disjunction
SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) & {
return has_value() ? *this : rhs;
}
/// \group disjunction
constexpr optional disjunction(const optional& rhs) const& {
return has_value() ? *this : rhs;
}
/// \group disjunction
SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) && {
return has_value() ? std::move(*this) : rhs;
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group disjunction
constexpr optional disjunction(const optional& rhs) const&& {
return has_value() ? std::move(*this) : rhs;
}
#endif
/// \group disjunction
SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) & {
return has_value() ? *this : std::move(rhs);
}
/// \group disjunction
constexpr optional disjunction(optional&& rhs) const& {
return has_value() ? *this : std::move(rhs);
}
/// \group disjunction
SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) && {
return has_value() ? std::move(*this) : std::move(rhs);
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group disjunction
constexpr optional disjunction(optional&& rhs) const&& {
return has_value() ? std::move(*this) : std::move(rhs);
}
#endif
/// Takes the value out of the optional, leaving it empty
/// \group take
optional take() & {
optional ret = *this;
reset();
return ret;
}
/// \group take
optional take() const& {
optional ret = *this;
reset();
return ret;
}
/// \group take
optional take() && {
optional ret = std::move(*this);
reset();
return ret;
}
#ifndef SOL_TL_OPTIONAL_NO_CONSTRR
/// \group take
optional take() const&& {
optional ret = std::move(*this);
reset();
return ret;
}
#endif
using value_type = T&;
/// Constructs an optional that does not contain a value.
/// \group ctor_empty
constexpr optional() noexcept : m_value(nullptr) {
}
/// \group ctor_empty
constexpr optional(nullopt_t) noexcept : m_value(nullptr) {
}
/// Copy constructor
///
/// If `rhs` contains a value, the stored value is direct-initialized with
/// it. Otherwise, the constructed optional is empty.
SOL_TL_OPTIONAL_11_CONSTEXPR optional(const optional& rhs) noexcept = default;
/// Move constructor
///
/// If `rhs` contains a value, the stored value is direct-initialized with
/// it. Otherwise, the constructed optional is empty.
SOL_TL_OPTIONAL_11_CONSTEXPR optional(optional&& rhs) = default;
/// Constructs the stored value with `u`.
/// \synopsis template <class U=T> constexpr optional(U &&u);
template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr>
constexpr optional(U&& u) : m_value(std::addressof(u)) {
static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue");
}
/// \exclude
template <class U>
constexpr explicit optional(const optional<U>& rhs) : optional(*rhs) {
}
/// No-op
~optional() = default;
/// Assignment to empty.
///
/// Destroys the current value if there is one.
optional& operator=(nullopt_t) noexcept {
m_value = nullptr;
return *this;
}
/// Copy assignment.
///
/// Rebinds this optional to the referee of `rhs` if there is one. Otherwise
/// resets the stored value in `*this`.
optional& operator=(const optional& rhs) = default;
/// Rebinds this optional to `u`.
///
/// \requires `U` must be an lvalue reference.
/// \synopsis optional &operator=(U &&u);
template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr>
optional& operator=(U&& u) {
static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue");
m_value = std::addressof(u);
return *this;
}
/// Converting copy assignment operator.
///
/// Rebinds this optional to the referee of `rhs` if there is one. Otherwise
/// resets the stored value in `*this`.
template <class U>
optional& operator=(const optional<U>& rhs) {
m_value = std::addressof(rhs.value());
return *this;
}
/// Constructs the value in-place, destroying the current one if there is
/// one.
///
/// \group emplace
template <class... Args>
T& emplace(Args&&... args) noexcept {
static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args");
*this = nullopt;
this->construct(std::forward<Args>(args)...);
}
/// Swaps this optional with the other.
///
/// If neither optionals have a value, nothing happens.
/// If both have a value, the values are swapped.
/// If one has a value, it is moved to the other and the movee is left
/// valueless.
void swap(optional& rhs) noexcept {
std::swap(m_value, rhs.m_value);
}
/// \returns a pointer to the stored value
/// \requires a value is stored
/// \group pointer
/// \synopsis constexpr const T *operator->() const;
constexpr const T* operator->() const {
return m_value;
}
/// \group pointer
/// \synopsis constexpr T *operator->();
SOL_TL_OPTIONAL_11_CONSTEXPR T* operator->() {
return m_value;
}
/// \returns the stored value
/// \requires a value is stored
/// \group deref
/// \synopsis constexpr T &operator*();
SOL_TL_OPTIONAL_11_CONSTEXPR T& operator*() {
return *m_value;
}
/// \group deref
/// \synopsis constexpr const T &operator*() const;
constexpr const T& operator*() const {
return *m_value;
}
/// \returns whether or not the optional has a value
/// \group has_value
constexpr bool has_value() const noexcept {
return m_value != nullptr;
}
/// \group has_value
constexpr explicit operator bool() const noexcept {
return m_value != nullptr;
}
/// \returns the contained value if there is one, otherwise throws
/// [bad_optional_access]
/// \group value
/// synopsis constexpr T &value();
SOL_TL_OPTIONAL_11_CONSTEXPR T& value() {
if (has_value())
return *m_value;
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
std::abort();
#else
throw bad_optional_access();
#endif // No exceptions allowed
}
/// \group value
/// \synopsis constexpr const T &value() const;
SOL_TL_OPTIONAL_11_CONSTEXPR const T& value() const {
if (has_value())
return *m_value;
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
std::abort();
#else
throw bad_optional_access();
#endif // No exceptions allowed
}
/// \returns the stored value if there is one, otherwise returns `u`
/// \group value_or
template <class U>
constexpr T& value_or(U&& u) const {
static_assert(std::is_convertible<U&&, T&>::value, "T must be convertible from U");
return has_value() ? const_cast<T&>(**this) : static_cast<T&>(std::forward<U>(u));
}
/// Destroys the stored value if one exists, making the optional empty
void reset() noexcept {
m_value = nullptr;
}
private:
T* m_value;
};
} // namespace sol
namespace std {
// TODO SFINAE
template <class T>
struct hash<::sol::optional<T>> {
::std::size_t operator()(const ::sol::optional<T>& o) const {
if (!o.has_value())
return 0;
return ::std::hash<::sol::detail::remove_const_t<T>>()(*o);
}
};
} // namespace std
// end of sol/optional_implementation.hpp
#endif // Boost vs. Better optional
#include <optional>
namespace sol {
#if SOL_IS_ON(SOL_USE_BOOST_I_)
template <typename T>
using optional = boost::optional<T>;
using nullopt_t = boost::none_t;
const nullopt_t nullopt = boost::none;
#endif // Boost vs. Better optional
namespace meta {
template <typename T>
using is_optional = any<is_specialization_of<T, optional>, is_specialization_of<T, std::optional>>;
template <typename T>
constexpr inline bool is_optional_v = is_optional<T>::value;
} // namespace meta
namespace detail {
template <typename T>
struct associated_nullopt {
inline static constexpr std::nullopt_t value = std::nullopt;
};
#if SOL_IS_ON(SOL_USE_BOOST_I_)
template <typename T>
struct associated_nullopt<boost::optional<T>> {
inline static constexpr std::nullopt_t value = boost::nullopt;
};
#endif // Boost nullopt
template <typename T>
inline constexpr auto associated_nullopt_v = associated_nullopt<T>::value;
} // namespace detail
} // namespace sol
// end of sol/optional.hpp
// beginning of sol/raii.hpp
#include <memory>
namespace sol {
namespace detail {
struct default_construct {
template <typename T, typename... Args>
static void construct(T&& obj, Args&&... args) {
typedef meta::unqualified_t<T> Tu;
std::allocator<Tu> alloc{};
std::allocator_traits<std::allocator<Tu>>::construct(alloc, std::forward<T>(obj), std::forward<Args>(args)...);
}
template <typename T, typename... Args>
void operator()(T&& obj, Args&&... args) const {
construct(std::forward<T>(obj), std::forward<Args>(args)...);
}
};
struct default_destruct {
template <typename T>
static void destroy(T&& obj) {
std::allocator<meta::unqualified_t<T>> alloc{};
alloc.destroy(obj);
}
template <typename T>
void operator()(T&& obj) const {
destroy(std::forward<T>(obj));
}
};
struct deleter {
template <typename T>
void operator()(T* p) const {
delete p;
}
};
struct state_deleter {
void operator()(lua_State* L) const {
lua_close(L);
}
};
template <typename T, typename Dx, typename... Args>
inline std::unique_ptr<T, Dx> make_unique_deleter(Args&&... args) {
return std::unique_ptr<T, Dx>(new T(std::forward<Args>(args)...));
}
template <typename Tag, typename T>
struct tagged {
private:
T value_;
public:
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, tagged>> = meta::enabler>
tagged(Arg&& arg, Args&&... args)
: value_(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
T& value() & {
return value_;
}
T const& value() const& {
return value_;
}
T&& value() && {
return std::move(value_);
}
};
} // namespace detail
template <typename... Args>
struct constructor_list {};
template <typename... Args>
using constructors = constructor_list<Args...>;
const auto default_constructor = constructors<types<>>{};
struct no_construction {};
const auto no_constructor = no_construction{};
struct call_construction {};
const auto call_constructor = call_construction{};
template <typename... Functions>
struct constructor_wrapper {
std::tuple<Functions...> functions;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler>
constructor_wrapper(Arg&& arg, Args&&... args)
: functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
};
template <typename... Functions>
inline auto initializers(Functions&&... functions) {
return constructor_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
}
template <typename... Functions>
struct factory_wrapper {
std::tuple<Functions...> functions;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, factory_wrapper>> = meta::enabler>
factory_wrapper(Arg&& arg, Args&&... args)
: functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
};
template <typename... Functions>
inline auto factories(Functions&&... functions) {
return factory_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
}
template <typename Function>
struct destructor_wrapper {
Function fx;
destructor_wrapper(Function f)
: fx(std::move(f)) {
}
};
template <>
struct destructor_wrapper<void> {};
const destructor_wrapper<void> default_destructor{};
template <typename Fx>
inline auto destructor(Fx&& fx) {
return destructor_wrapper<std::decay_t<Fx>>(std::forward<Fx>(fx));
}
} // namespace sol
// end of sol/raii.hpp
// beginning of sol/policies.hpp
#include <array>
namespace sol {
namespace detail {
struct policy_base_tag {};
} // namespace detail
template <int Target, int... In>
struct static_stack_dependencies : detail::policy_base_tag {};
typedef static_stack_dependencies<-1, 1> self_dependency;
template <int... In>
struct returns_self_with : detail::policy_base_tag {};
typedef returns_self_with<> returns_self;
struct stack_dependencies : detail::policy_base_tag {
int target;
std::array<int, 64> stack_indices;
std::size_t len;
template <typename... Args>
stack_dependencies(int stack_target, Args&&... args) : target(stack_target), stack_indices(), len(sizeof...(Args)) {
std::size_t i = 0;
(void)detail::swallow{ int(), (stack_indices[i++] = static_cast<int>(std::forward<Args>(args)), int())... };
}
int& operator[](std::size_t i) {
return stack_indices[i];
}
const int& operator[](std::size_t i) const {
return stack_indices[i];
}
std::size_t size() const {
return len;
}
};
template <typename F, typename... Policies>
struct policy_wrapper {
typedef std::index_sequence_for<Policies...> indices;
F value;
std::tuple<Policies...> policies;
template <typename Fx, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Fx>, policy_wrapper>>> = meta::enabler>
policy_wrapper(Fx&& fx, Args&&... args) : value(std::forward<Fx>(fx)), policies(std::forward<Args>(args)...) {
}
policy_wrapper(const policy_wrapper&) = default;
policy_wrapper& operator=(const policy_wrapper&) = default;
policy_wrapper(policy_wrapper&&) = default;
policy_wrapper& operator=(policy_wrapper&&) = default;
};
template <typename F, typename... Args>
auto policies(F&& f, Args&&... args) {
return policy_wrapper<std::decay_t<F>, std::decay_t<Args>...>(std::forward<F>(f), std::forward<Args>(args)...);
}
namespace detail {
template <typename T>
using is_policy = meta::is_specialization_of<T, policy_wrapper>;
template <typename T>
inline constexpr bool is_policy_v = is_policy<T>::value;
} // namespace detail
} // namespace sol
// end of sol/policies.hpp
// beginning of sol/ebco.hpp
#include <type_traits>
#include <utility>
namespace sol { namespace detail {
template <typename T, std::size_t tag = 0, typename = void>
struct ebco {
T value_;
ebco() = default;
ebco(const ebco&) = default;
ebco(ebco&&) = default;
ebco& operator=(const ebco&) = default;
ebco& operator=(ebco&&) = default;
ebco(const T& v) : value_(v){};
ebco(T&& v) : value_(std::move(v)){};
ebco& operator=(const T& v) {
value_ = v;
return *this;
}
ebco& operator=(T&& v) {
value_ = std::move(v);
return *this;
};
template <typename Arg, typename... Args,
typename = std::enable_if_t<!std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>,
ebco> && !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, T>>>
ebco(Arg&& arg, Args&&... args) : T(std::forward<Arg>(arg), std::forward<Args>(args)...){}
T& value() & {
return value_;
}
T const& value() const & {
return value_;
}
T&& value() && {
return std::move(value_);
}
};
template <typename T, std::size_t tag>
struct ebco<T, tag, std::enable_if_t<!std::is_reference_v<T> && std::is_class_v<T> && !std::is_final_v<T>>> : T {
ebco() = default;
ebco(const ebco&) = default;
ebco(ebco&&) = default;
ebco(const T& v) : T(v){};
ebco(T&& v) : T(std::move(v)){};
template <typename Arg, typename... Args,
typename = std::enable_if_t<!std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>,
ebco> && !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, T>>>
ebco(Arg&& arg, Args&&... args) : T(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
ebco& operator=(const ebco&) = default;
ebco& operator=(ebco&&) = default;
ebco& operator=(const T& v) {
static_cast<T&>(*this) = v;
return *this;
}
ebco& operator=(T&& v) {
static_cast<T&>(*this) = std::move(v);
return *this;
};
T& value() & {
return static_cast<T&>(*this);
}
T const& value() const & {
return static_cast<T const&>(*this);
}
T&& value() && {
return std::move(static_cast<T&>(*this));
}
};
template <typename T, std::size_t tag>
struct ebco<T&, tag> {
T& ref;
ebco() = default;
ebco(const ebco&) = default;
ebco(ebco&&) = default;
ebco(T& v) : ref(v){};
ebco& operator=(const ebco&) = default;
ebco& operator=(ebco&&) = default;
ebco& operator=(T& v) {
ref = v;
return *this;
}
T& value() const {
return const_cast<ebco<T&, tag>&>(*this).ref;
}
};
template <typename T, std::size_t tag>
struct ebco<T&&, tag> {
T&& ref;
ebco() = default;
ebco(const ebco&) = default;
ebco(ebco&&) = default;
ebco(T&& v) : ref(v){};
ebco& operator=(const ebco&) = default;
ebco& operator=(ebco&&) = default;
ebco& operator=(T&& v) {
ref = std::move(v);
return *this;
}
T& value() & {
return ref;
}
const T& value() const & {
return ref;
}
T&& value() && {
return std::move(ref);
}
};
}} // namespace sol::detail
// end of sol/ebco.hpp
#include <array>
#include <initializer_list>
#include <string>
#include <string_view>
#include <optional>
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
#include <variant>
#endif // variant shenanigans (thanks, Mac OSX)
namespace sol {
namespace detail {
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
typedef int (*lua_CFunction_noexcept)(lua_State* L) noexcept;
#else
typedef int (*lua_CFunction_noexcept)(lua_State* L);
#endif // noexcept function type for lua_CFunction
template <typename T>
struct unique_usertype { };
template <typename T>
struct implicit_wrapper {
T& item;
implicit_wrapper(T* item) : item(*item) {
}
implicit_wrapper(T& item) : item(item) {
}
operator T&() {
return item;
}
operator T*() {
return std::addressof(item);
}
};
struct yield_tag_t { };
const yield_tag_t yield_tag = yield_tag_t {};
} // namespace detail
struct lua_nil_t { };
inline constexpr lua_nil_t lua_nil {};
inline bool operator==(lua_nil_t, lua_nil_t) {
return true;
}
inline bool operator!=(lua_nil_t, lua_nil_t) {
return false;
}
#if SOL_IS_ON(SOL_NIL_I_)
using nil_t = lua_nil_t;
inline constexpr const nil_t& nil = lua_nil;
#endif
namespace detail {
struct non_lua_nil_t { };
} // namespace detail
struct metatable_key_t { };
const metatable_key_t metatable_key = {};
struct env_key_t { };
const env_key_t env_key = {};
struct no_metatable_t { };
const no_metatable_t no_metatable = {};
template <typename T>
struct yielding_t {
T func;
yielding_t() = default;
yielding_t(const yielding_t&) = default;
yielding_t(yielding_t&&) = default;
yielding_t& operator=(const yielding_t&) = default;
yielding_t& operator=(yielding_t&&) = default;
template <typename Arg,
meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, yielding_t>>,
meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
yielding_t(Arg&& arg) : func(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
yielding_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : func(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
};
template <typename F>
inline yielding_t<std::decay_t<F>> yielding(F&& f) {
return yielding_t<std::decay_t<F>>(std::forward<F>(f));
}
typedef std::remove_pointer_t<lua_CFunction> lua_CFunction_ref;
template <typename T>
struct non_null { };
template <typename... Args>
struct function_sig { };
struct upvalue_index {
int index;
upvalue_index(int idx) : index(lua_upvalueindex(idx)) {
}
operator int() const {
return index;
}
};
struct raw_index {
int index;
raw_index(int i) : index(i) {
}
operator int() const {
return index;
}
};
struct absolute_index {
int index;
absolute_index(lua_State* L, int idx) : index(lua_absindex(L, idx)) {
}
operator int() const {
return index;
}
};
struct ref_index {
int index;
ref_index(int idx) : index(idx) {
}
operator int() const {
return index;
}
};
struct stack_count {
int count;
stack_count(int cnt) : count(cnt) {
}
};
struct lightuserdata_value {
void* value;
lightuserdata_value(void* data) : value(data) {
}
operator void*() const {
return value;
}
};
struct userdata_value {
void* value;
userdata_value(void* data) : value(data) {
}
operator void*() const {
return value;
}
};
template <typename L>
struct light {
L* value;
light(L& x) : value(std::addressof(x)) {
}
light(L* x) : value(x) {
}
light(void* x) : value(static_cast<L*>(x)) {
}
operator L*() const {
return value;
}
operator L&() const {
return *value;
}
};
template <typename T>
auto make_light(T& l) {
typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L;
return light<L>(l);
}
template <typename U>
struct user {
U value;
user(U&& x) : value(std::forward<U>(x)) {
}
operator std::add_pointer_t<std::remove_reference_t<U>>() {
return std::addressof(value);
}
operator std::add_lvalue_reference_t<U>() {
return value;
}
operator std::add_const_t<std::add_lvalue_reference_t<U>> &() const {
return value;
}
};
template <typename T>
auto make_user(T&& u) {
typedef meta::unwrapped_t<meta::unqualified_t<T>> U;
return user<U>(std::forward<T>(u));
}
template <typename T>
struct metatable_registry_key {
T key;
metatable_registry_key(T key) : key(std::forward<T>(key)) {
}
};
template <typename T>
auto meta_registry_key(T&& key) {
typedef meta::unqualified_t<T> K;
return metatable_registry_key<K>(std::forward<T>(key));
}
template <typename... Upvalues>
struct closure {
lua_CFunction c_function;
std::tuple<Upvalues...> upvalues;
closure(lua_CFunction f, Upvalues... targetupvalues) : c_function(f), upvalues(std::forward<Upvalues>(targetupvalues)...) {
}
};
template <>
struct closure<> {
lua_CFunction c_function;
int upvalues;
closure(lua_CFunction f, int upvalue_count = 0) : c_function(f), upvalues(upvalue_count) {
}
};
typedef closure<> c_closure;
template <typename... Args>
closure<Args...> make_closure(lua_CFunction f, Args&&... args) {
return closure<Args...>(f, std::forward<Args>(args)...);
}
template <typename Sig, typename... Ps>
struct function_arguments {
std::tuple<Ps...> arguments;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler>
function_arguments(Arg&& arg, Args&&... args) : arguments(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
};
template <typename Sig = function_sig<>, typename... Args>
auto as_function(Args&&... args) {
return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...);
}
template <typename Sig = function_sig<>, typename... Args>
auto as_function_reference(Args&&... args) {
return function_arguments<Sig, Args...>(std::forward<Args>(args)...);
}
template <typename T>
struct as_table_t {
private:
T value_;
public:
as_table_t() = default;
as_table_t(const as_table_t&) = default;
as_table_t(as_table_t&&) = default;
as_table_t& operator=(const as_table_t&) = default;
as_table_t& operator=(as_table_t&&) = default;
template <typename Arg,
meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_table_t>>,
meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
as_table_t(Arg&& arg) : value_(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
as_table_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
T& value() & {
return value_;
}
T&& value() && {
return std::move(value_);
}
const T& value() const& {
return value_;
}
operator std::add_lvalue_reference_t<T>() {
return value_;
}
};
template <typename T>
struct nested {
private:
T value_;
public:
using nested_type = T;
nested() = default;
nested(const nested&) = default;
nested(nested&&) = default;
nested& operator=(const nested&) = default;
nested& operator=(nested&&) = default;
template <typename Arg,
meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, nested>>,
meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
nested(Arg&& arg) : value_(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
nested(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
T& value() & {
return value_;
}
T&& value() && {
return std::move(value_);
}
const T& value() const& {
return value_;
}
operator std::add_lvalue_reference_t<T>() {
return value_;
}
};
struct nested_tag_t { };
constexpr inline nested_tag_t nested_tag {};
template <typename T>
as_table_t<T> as_table_ref(T&& container) {
return as_table_t<T>(std::forward<T>(container));
}
template <typename T>
as_table_t<meta::unqualified_t<T>> as_table(T&& container) {
return as_table_t<meta::unqualified_t<T>>(std::forward<T>(container));
}
template <typename T>
nested<T> as_nested_ref(T&& container) {
return nested<T>(std::forward<T>(container));
}
template <typename T>
nested<meta::unqualified_t<T>> as_nested(T&& container) {
return nested<meta::unqualified_t<T>>(std::forward<T>(container));
}
template <typename T>
struct as_container_t {
private:
T value_;
public:
using type = T;
as_container_t() = default;
as_container_t(const as_container_t&) = default;
as_container_t(as_container_t&&) = default;
as_container_t& operator=(const as_container_t&) = default;
as_container_t& operator=(as_container_t&&) = default;
template <typename Arg,
meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_container_t>>,
meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
as_container_t(Arg&& arg) : value_(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
as_container_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
T& value() & {
return value_;
}
T&& value() && {
return std::move(value_);
}
const T& value() const& {
return value_;
}
};
template <typename T>
struct as_container_t<T&> {
private:
std::reference_wrapper<T> value_;
public:
as_container_t(T& value) : value_(value) {
}
T& value() {
return value_;
}
operator T&() {
return value();
}
};
template <typename T>
auto as_container(T&& value) {
return as_container_t<T>(std::forward<T>(value));
}
template <typename T>
struct push_invoke_t {
private:
T value_;
public:
push_invoke_t() = default;
push_invoke_t(const push_invoke_t&) = default;
push_invoke_t(push_invoke_t&&) = default;
push_invoke_t& operator=(const push_invoke_t&) = default;
push_invoke_t& operator=(push_invoke_t&&) = default;
template <typename Arg,
meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, push_invoke_t>>,
meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
push_invoke_t(Arg&& arg) : value_(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
push_invoke_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
T& value() & {
return value_;
}
T&& value() && {
return std::move(value_);
}
const T& value() const& {
return value_;
}
};
template <typename T>
struct push_invoke_t<T&> {
std::reference_wrapper<T> value_;
push_invoke_t(T& value) : value_(value) {
}
T& value() {
return value_;
}
};
template <typename Fx>
auto push_invoke(Fx&& fx) {
return push_invoke_t<Fx>(std::forward<Fx>(fx));
}
struct override_value_t { };
constexpr inline override_value_t override_value = override_value_t();
struct update_if_empty_t { };
constexpr inline update_if_empty_t update_if_empty = update_if_empty_t();
struct create_if_nil_t { };
constexpr inline create_if_nil_t create_if_nil = create_if_nil_t();
namespace detail {
enum insert_mode { none = 0x0, update_if_empty = 0x01, override_value = 0x02, create_if_nil = 0x04 };
template <typename T, typename...>
using is_insert_mode = std::integral_constant<bool,
std::is_same_v<T, override_value_t> || std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, create_if_nil_t>>;
template <typename T, typename...>
using is_not_insert_mode = meta::neg<is_insert_mode<T>>;
} // namespace detail
struct this_state {
lua_State* L;
this_state(lua_State* Ls) : L(Ls) {
}
operator lua_State*() const noexcept {
return lua_state();
}
lua_State* operator->() const noexcept {
return lua_state();
}
lua_State* lua_state() const noexcept {
return L;
}
};
struct this_main_state {
lua_State* L;
this_main_state(lua_State* Ls) : L(Ls) {
}
operator lua_State*() const noexcept {
return lua_state();
}
lua_State* operator->() const noexcept {
return lua_state();
}
lua_State* lua_state() const noexcept {
return L;
}
};
struct new_table {
int sequence_hint = 0;
int map_hint = 0;
new_table() = default;
new_table(const new_table&) = default;
new_table(new_table&&) = default;
new_table& operator=(const new_table&) = default;
new_table& operator=(new_table&&) = default;
new_table(int sequence_hint, int map_hint = 0) : sequence_hint(sequence_hint), map_hint(map_hint) {
}
};
const new_table create = {};
enum class lib : char {
// print, assert, and other base functions
base,
// require and other package functions
package,
// coroutine functions and utilities
coroutine,
// string library
string,
// functionality from the OS
os,
// all things math
math,
// the table manipulator and observer functions
table,
// the debug library
debug,
// the bit library: different based on which you're using
bit32,
// input/output library
io,
// LuaJIT only
ffi,
// LuaJIT only
jit,
// library for handling utf8: new to Lua
utf8,
// do not use
count
};
enum class call_syntax { dot = 0, colon = 1 };
enum class load_mode {
any = 0,
text = 1,
binary = 2,
};
enum class call_status : int {
ok = LUA_OK,
yielded = LUA_YIELD,
runtime = LUA_ERRRUN,
memory = LUA_ERRMEM,
handler = LUA_ERRERR,
gc = LUA_ERRGCMM,
syntax = LUA_ERRSYNTAX,
file = LUA_ERRFILE,
};
enum class thread_status : int {
ok = LUA_OK,
yielded = LUA_YIELD,
runtime = LUA_ERRRUN,
memory = LUA_ERRMEM,
gc = LUA_ERRGCMM,
handler = LUA_ERRERR,
dead = -1,
};
enum class load_status : int {
ok = LUA_OK,
syntax = LUA_ERRSYNTAX,
memory = LUA_ERRMEM,
gc = LUA_ERRGCMM,
file = LUA_ERRFILE,
};
enum class gc_mode : int {
incremental = 0,
generational = 1,
default_value = incremental,
};
enum class type : int {
none = LUA_TNONE,
lua_nil = LUA_TNIL,
#if SOL_IS_ON(SOL_NIL_I_)
nil = lua_nil,
#endif // Objective C/C++ Keyword that's found in OSX SDK and OBJC -- check for all forms to protect
string = LUA_TSTRING,
number = LUA_TNUMBER,
thread = LUA_TTHREAD,
boolean = LUA_TBOOLEAN,
function = LUA_TFUNCTION,
userdata = LUA_TUSERDATA,
lightuserdata = LUA_TLIGHTUSERDATA,
table = LUA_TTABLE,
poly = -0xFFFF
};
inline const std::string& to_string(call_status c) {
static const std::array<std::string, 10> names { { "ok",
"yielded",
"runtime",
"memory",
"handler",
"gc",
"syntax",
"file",
"CRITICAL_EXCEPTION_FAILURE",
"CRITICAL_INDETERMINATE_STATE_FAILURE" } };
switch (c) {
case call_status::ok:
return names[0];
case call_status::yielded:
return names[1];
case call_status::runtime:
return names[2];
case call_status::memory:
return names[3];
case call_status::handler:
return names[4];
case call_status::gc:
return names[5];
case call_status::syntax:
return names[6];
case call_status::file:
return names[7];
}
if (static_cast<std::ptrdiff_t>(c) == -1) {
// One of the many cases where a critical exception error has occurred
return names[8];
}
return names[9];
}
inline bool is_indeterminate_call_failure(call_status c) {
switch (c) {
case call_status::ok:
case call_status::yielded:
case call_status::runtime:
case call_status::memory:
case call_status::handler:
case call_status::gc:
case call_status::syntax:
case call_status::file:
return false;
}
return true;
}
inline const std::string& to_string(load_status c) {
static const std::array<std::string, 7> names {
{ "ok", "memory", "gc", "syntax", "file", "CRITICAL_EXCEPTION_FAILURE", "CRITICAL_INDETERMINATE_STATE_FAILURE" }
};
switch (c) {
case load_status::ok:
return names[0];
case load_status::memory:
return names[1];
case load_status::gc:
return names[2];
case load_status::syntax:
return names[3];
case load_status::file:
return names[4];
}
if (static_cast<int>(c) == -1) {
// One of the many cases where a critical exception error has occurred
return names[5];
}
return names[6];
}
inline const std::string& to_string(load_mode c) {
static const std::array<std::string, 3> names { {
"bt",
"t",
"b",
} };
return names[static_cast<std::size_t>(c)];
}
enum class meta_function {
construct,
index,
new_index,
mode,
call,
call_function = call,
metatable,
to_string,
length,
unary_minus,
addition,
subtraction,
multiplication,
division,
modulus,
power_of,
involution = power_of,
concatenation,
equal_to,
less_than,
less_than_or_equal_to,
garbage_collect,
floor_division,
bitwise_left_shift,
bitwise_right_shift,
bitwise_not,
bitwise_and,
bitwise_or,
bitwise_xor,
pairs,
ipairs,
next,
type,
type_info,
call_construct,
storage,
gc_names,
static_index,
static_new_index,
};
typedef meta_function meta_method;
inline const std::array<std::string, 37>& meta_function_names() {
static const std::array<std::string, 37> names = { { "new",
"__index",
"__newindex",
"__mode",
"__call",
"__metatable",
"__tostring",
"__len",
"__unm",
"__add",
"__sub",
"__mul",
"__div",
"__mod",
"__pow",
"__concat",
"__eq",
"__lt",
"__le",
"__gc",
"__idiv",
"__shl",
"__shr",
"__bnot",
"__band",
"__bor",
"__bxor",
"__pairs",
"__ipairs",
"next",
"__type",
"__typeinfo",
"__sol.call_new",
"__sol.storage",
"__sol.gc_names",
"__sol.static_index",
"__sol.static_new_index" } };
return names;
}
inline const std::string& to_string(meta_function mf) {
return meta_function_names()[static_cast<int>(mf)];
}
inline type type_of(lua_State* L, int index) {
return static_cast<type>(lua_type(L, index));
}
inline std::string type_name(lua_State* L, type t) {
return lua_typename(L, static_cast<int>(t));
}
template <typename T>
struct is_lua_reference
: std::integral_constant<bool, std::is_base_of_v<reference, T> || std::is_base_of_v<main_reference, T> || std::is_base_of_v<stack_reference, T>> { };
template <typename T>
inline constexpr bool is_lua_reference_v = is_lua_reference<T>::value;
template <typename T>
struct is_lua_reference_or_proxy : std::integral_constant<bool, is_lua_reference_v<T> || meta::is_specialization_of_v<T, table_proxy>> { };
template <typename T>
inline constexpr bool is_lua_reference_or_proxy_v = is_lua_reference_or_proxy<T>::value;
template <typename T>
struct is_transparent_argument : std::false_type { };
template <typename T>
constexpr inline bool is_transparent_argument_v = is_transparent_argument<T>::value;
template <>
struct is_transparent_argument<this_state> : std::true_type { };
template <>
struct is_transparent_argument<this_main_state> : std::true_type { };
template <>
struct is_transparent_argument<this_environment> : std::true_type { };
template <>
struct is_transparent_argument<variadic_args> : std::true_type { };
template <typename T>
struct is_variadic_arguments : std::is_same<T, variadic_args> { };
template <typename T>
struct is_container
: std::integral_constant<bool,
!std::is_same_v<state_view,
T> && !std::is_same_v<state, T> && !meta::is_initializer_list_v<T> && !meta::is_string_like_v<T> && !meta::is_string_literal_array_v<T> && !is_transparent_argument_v<T> && !is_lua_reference_v<T> && (meta::has_begin_end_v<T> || std::is_array_v<T>)> {
};
template <typename T>
constexpr inline bool is_container_v = is_container<T>::value;
template <typename T>
struct is_to_stringable : meta::any<meta::supports_to_string_member<meta::unqualified_t<T>>, meta::supports_adl_to_string<meta::unqualified_t<T>>,
meta::supports_op_left_shift<std::ostream, meta::unqualified_t<T>>> { };
namespace detail {
template <typename T, typename = void>
struct lua_type_of : std::integral_constant<type, type::userdata> { };
template <typename C, typename T, typename A>
struct lua_type_of<std::basic_string<C, T, A>> : std::integral_constant<type, type::string> { };
template <typename C, typename T>
struct lua_type_of<basic_string_view<C, T>> : std::integral_constant<type, type::string> { };
template <std::size_t N>
struct lua_type_of<char[N]> : std::integral_constant<type, type::string> { };
template <std::size_t N>
struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> { };
template <std::size_t N>
struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> { };
template <std::size_t N>
struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> { };
template <>
struct lua_type_of<char> : std::integral_constant<type, type::string> { };
template <>
struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> { };
template <>
struct lua_type_of<char16_t> : std::integral_constant<type, type::string> { };
template <>
struct lua_type_of<char32_t> : std::integral_constant<type, type::string> { };
template <>
struct lua_type_of<const char*> : std::integral_constant<type, type::string> { };
template <>
struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> { };
template <>
struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> { };
template <>
struct lua_type_of<bool> : std::integral_constant<type, type::boolean> { };
template <>
struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> { };
template <>
struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> { };
template <>
struct lua_type_of<lua_value> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<detail::non_lua_nil_t> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> { };
template <>
struct lua_type_of<error> : std::integral_constant<type, type::string> { };
template <bool b, typename Base>
struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> { };
template <typename Base>
struct lua_type_of<basic_lua_table<Base>> : std::integral_constant<type, type::table> { };
template <typename Base>
struct lua_type_of<basic_metatable<Base>> : std::integral_constant<type, type::table> { };
template <typename T, typename Base>
struct lua_type_of<basic_usertype<T, Base>> : std::integral_constant<type, type::table> { };
template <>
struct lua_type_of<metatable_key_t> : std::integral_constant<type, type::table> { };
template <typename B>
struct lua_type_of<basic_environment<B>> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<env_key_t> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<new_table> : std::integral_constant<type, type::table> { };
template <typename T>
struct lua_type_of<as_table_t<T>> : std::integral_constant<type, type::table> { };
template <typename T>
struct lua_type_of<std::initializer_list<T>> : std::integral_constant<type, type::table> { };
template <bool b>
struct lua_type_of<basic_reference<b>> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> { };
template <typename Base>
struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> { };
template <typename... Args>
struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> { };
template <typename A, typename B>
struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> { };
template <>
struct lua_type_of<const void*> : std::integral_constant<type, type::lightuserdata> { };
template <>
struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> { };
template <>
struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> { };
template <typename T>
struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> { };
template <typename T>
struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> { };
template <typename Base>
struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> { };
template <typename Base>
struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> { };
template <>
struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> { };
template <>
struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> { };
template <typename Base, bool aligned>
struct lua_type_of<basic_function<Base, aligned>> : std::integral_constant<type, type::function> { };
template <typename Base, bool aligned, typename Handler>
struct lua_type_of<basic_protected_function<Base, aligned, Handler>> : std::integral_constant<type, type::function> { };
template <typename Base>
struct lua_type_of<basic_coroutine<Base>> : std::integral_constant<type, type::function> { };
template <typename Base>
struct lua_type_of<basic_thread<Base>> : std::integral_constant<type, type::thread> { };
template <typename Signature>
struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> { };
template <typename T>
struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> { };
template <typename T>
struct lua_type_of<std::optional<T>> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<variadic_results> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<stack_count> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<this_state> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<this_main_state> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<this_environment> : std::integral_constant<type, type::poly> { };
template <>
struct lua_type_of<type> : std::integral_constant<type, type::poly> { };
#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
template <typename T>
struct lua_type_of<T*> : std::integral_constant<type, std::is_function_v<T> ? type::function : type::userdata> { };
#else
template <typename T>
struct lua_type_of<T*> : std::integral_constant<type, type::userdata> { };
#endif
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_arithmetic_v<T> || std::is_same_v<T, lua_Number> || std::is_same_v<T, lua_Integer>>>
: std::integral_constant<type, type::number> { };
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_function_v<T>>> : std::integral_constant<type, type::function> { };
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_enum_v<T>>> : std::integral_constant<type, type::number> { };
template <>
struct lua_type_of<meta_function> : std::integral_constant<type, type::string> { };
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
template <typename... Tn>
struct lua_type_of<std::variant<Tn...>> : std::integral_constant<type, type::poly> { };
#endif // std::variant deployment sucks on Clang
template <typename T>
struct lua_type_of<nested<T>> : meta::conditional_t<::sol::is_container_v<T>, std::integral_constant<type, type::table>, lua_type_of<T>> { };
template <typename C, C v, template <typename...> class V, typename... Args>
struct accumulate : std::integral_constant<C, v> { };
template <typename C, C v, template <typename...> class V, typename T, typename... Args>
struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> { };
template <typename C, C v, template <typename...> class V, typename List>
struct accumulate_list;
template <typename C, C v, template <typename...> class V, typename... Args>
struct accumulate_list<C, v, V, types<Args...>> : accumulate<C, v, V, Args...> { };
} // namespace detail
template <typename T>
struct lua_type_of : detail::lua_type_of<T> {
typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
};
template <typename T>
inline constexpr type lua_type_of_v = lua_type_of<T>::value;
template <typename T>
struct lua_size : std::integral_constant<int, 1> {
typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
};
template <typename A, typename B>
struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> { };
template <typename... Args>
struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> { };
template <typename T>
inline constexpr int lua_size_v = lua_size<T>::value;
namespace detail {
template <typename...>
struct void_ {
typedef void type;
};
template <typename T, typename = void>
struct has_internal_marker_impl : std::false_type { };
template <typename T>
struct has_internal_marker_impl<T, typename void_<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>::type> : std::true_type { };
template <typename T>
using has_internal_marker = has_internal_marker_impl<T>;
template <typename T>
constexpr inline bool has_internal_marker_v = has_internal_marker<T>::value;
} // namespace detail
template <typename T>
struct is_lua_primitive
: std::integral_constant<bool,
type::userdata
!= lua_type_of_v<
T> || ((type::userdata == lua_type_of_v<T>)&&detail::has_internal_marker_v<lua_type_of<T>> && !detail::has_internal_marker_v<lua_size<T>>)
|| is_lua_reference_or_proxy_v<T> || meta::is_specialization_of_v<T, std::tuple> || meta::is_specialization_of_v<T, std::pair>> { };
template <typename T>
constexpr inline bool is_lua_primitive_v = is_lua_primitive<T>::value;
template <typename T>
struct is_main_threaded : std::is_base_of<main_reference, T> { };
template <typename T>
struct is_stack_based : std::is_base_of<stack_reference, T> { };
template <>
struct is_stack_based<variadic_args> : std::true_type { };
template <>
struct is_stack_based<unsafe_function_result> : std::true_type { };
template <>
struct is_stack_based<protected_function_result> : std::true_type { };
template <>
struct is_stack_based<stack_proxy> : std::true_type { };
template <>
struct is_stack_based<stack_proxy_base> : std::true_type { };
template <>
struct is_stack_based<stack_count> : std::true_type { };
template <typename T>
constexpr inline bool is_stack_based_v = is_stack_based<T>::value;
template <typename T>
struct is_lua_primitive<T*> : std::true_type { };
template <>
struct is_lua_primitive<unsafe_function_result> : std::true_type { };
template <>
struct is_lua_primitive<protected_function_result> : std::true_type { };
template <typename T>
struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type { };
template <typename T>
struct is_lua_primitive<user<T>> : std::true_type { };
template <typename T>
struct is_lua_primitive<light<T>> : is_lua_primitive<T*> { };
template <typename T>
struct is_lua_primitive<optional<T>> : std::true_type { };
template <typename T>
struct is_lua_primitive<std::optional<T>> : std::true_type { };
template <typename T>
struct is_lua_primitive<as_table_t<T>> : std::true_type { };
template <typename T>
struct is_lua_primitive<nested<T>> : std::true_type { };
template <>
struct is_lua_primitive<userdata_value> : std::true_type { };
template <>
struct is_lua_primitive<lightuserdata_value> : std::true_type { };
template <>
struct is_lua_primitive<stack_proxy> : std::true_type { };
template <>
struct is_lua_primitive<stack_proxy_base> : std::true_type { };
template <typename T>
struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> { };
template <typename T>
struct is_lua_index : std::is_integral<T> { };
template <>
struct is_lua_index<raw_index> : std::true_type { };
template <>
struct is_lua_index<absolute_index> : std::true_type { };
template <>
struct is_lua_index<ref_index> : std::true_type { };
template <>
struct is_lua_index<upvalue_index> : std::true_type { };
template <typename Signature>
struct lua_bind_traits : meta::bind_traits<Signature> {
private:
typedef meta::bind_traits<Signature> base_t;
public:
typedef std::integral_constant<bool, meta::count_for<is_variadic_arguments, typename base_t::args_list>::value != 0> runtime_variadics_t;
static const std::size_t true_arity = base_t::arity;
static const std::size_t arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::args_list>::value
- meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
static const std::size_t true_free_arity = base_t::free_arity;
static const std::size_t free_arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::free_args_list>::value
- meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
};
template <typename T>
struct is_table : std::false_type { };
template <bool x, typename T>
struct is_table<basic_table_core<x, T>> : std::true_type { };
template <typename T>
struct is_table<basic_lua_table<T>> : std::true_type { };
template <typename T>
inline constexpr bool is_table_v = is_table<T>::value;
template <typename T>
struct is_stack_table : std::false_type { };
template <bool x, typename T>
struct is_stack_table<basic_table_core<x, T>> : std::integral_constant<bool, std::is_base_of_v<stack_reference, T>> { };
template <typename T>
struct is_stack_table<basic_lua_table<T>> : std::integral_constant<bool, std::is_base_of_v<stack_reference, T>> { };
template <typename T>
inline constexpr bool is_stack_table_v = is_stack_table<T>::value;
template <typename T>
struct is_function : std::false_type { };
template <typename T, bool aligned>
struct is_function<basic_function<T, aligned>> : std::true_type { };
template <typename T, bool aligned, typename Handler>
struct is_function<basic_protected_function<T, aligned, Handler>> : std::true_type { };
template <typename T>
using is_lightuserdata = meta::is_specialization_of<T, basic_lightuserdata>;
template <typename T>
inline constexpr bool is_lightuserdata_v = is_lightuserdata<T>::value;
template <typename T>
using is_userdata = meta::is_specialization_of<T, basic_userdata>;
template <typename T>
inline constexpr bool is_userdata_v = is_userdata<T>::value;
template <typename T>
using is_environment = std::integral_constant<bool, is_userdata_v<T> || is_table_v<T> || meta::is_specialization_of_v<T, basic_environment>>;
template <typename T>
inline constexpr bool is_environment_v = is_environment<T>::value;
template <typename T>
using is_table_like = std::integral_constant<bool, is_table_v<T> || is_environment_v<T> || is_userdata_v<T>>;
template <typename T>
inline constexpr bool is_table_like_v = is_table_like<T>::value;
template <typename T>
struct is_automagical
: std::integral_constant<bool,
(SOL_IS_ON(SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_))
|| (std::is_array_v<
meta::unqualified_t<T>> || (!std::is_same_v<meta::unqualified_t<T>, state> && !std::is_same_v<meta::unqualified_t<T>, state_view>))> {
};
template <typename T>
inline type type_of() {
return lua_type_of<meta::unqualified_t<T>>::value;
}
namespace detail {
template <typename T>
struct is_non_factory_constructor : std::false_type { };
template <typename... Args>
struct is_non_factory_constructor<constructors<Args...>> : std::true_type { };
template <typename... Args>
struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type { };
template <>
struct is_non_factory_constructor<no_construction> : std::true_type { };
template <typename T>
inline constexpr bool is_non_factory_constructor_v = is_non_factory_constructor<T>::value;
template <typename T>
struct is_constructor : is_non_factory_constructor<T> { };
template <typename... Args>
struct is_constructor<factory_wrapper<Args...>> : std::true_type { };
template <typename T>
struct is_constructor<protect_t<T>> : is_constructor<meta::unqualified_t<T>> { };
template <typename F, typename... Policies>
struct is_constructor<policy_wrapper<F, Policies...>> : is_constructor<meta::unqualified_t<F>> { };
template <typename T>
inline constexpr bool is_constructor_v = is_constructor<T>::value;
template <typename... Args>
using any_is_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>;
template <typename... Args>
inline constexpr bool any_is_constructor_v = any_is_constructor<Args...>::value;
template <typename T>
struct is_destructor : std::false_type { };
template <typename Fx>
struct is_destructor<destructor_wrapper<Fx>> : std::true_type { };
template <typename... Args>
using any_is_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>;
template <typename... Args>
inline constexpr bool any_is_destructor_v = any_is_destructor<Args...>::value;
} // namespace detail
template <typename T>
using is_lua_c_function = meta::any<std::is_same<lua_CFunction, T>, std::is_same<detail::lua_CFunction_noexcept, T>, std::is_same<lua_CFunction_ref, T>>;
template <typename T>
inline constexpr bool is_lua_c_function_v = is_lua_c_function<T>::value;
struct automagic_enrollments {
bool default_constructor = true;
bool destructor = true;
bool pairs_operator = true;
bool to_string_operator = true;
bool call_operator = true;
bool less_than_operator = true;
bool less_than_or_equal_to_operator = true;
bool length_operator = true;
bool equal_to_operator = true;
};
} // namespace sol
// end of sol/types.hpp
#include <exception>
#include <cstring>
#if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
#include <iostream>
#endif
namespace sol {
// must push a single object to be the error object
// NOTE: the VAST MAJORITY of all Lua libraries -- C or otherwise -- expect a string for the type of error
// break this convention at your own risk
using exception_handler_function = int (*)(lua_State*, optional<const std::exception&>, string_view);
namespace detail {
inline const char (&default_exception_handler_name())[11] {
static const char name[11] = "sol.\xE2\x98\xA2\xE2\x98\xA2";
return name;
}
// must push at least 1 object on the stack
inline int default_exception_handler(lua_State* L, optional<const std::exception&>, string_view what) {
#if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
std::cerr << "[sol3] An exception occurred: ";
std::cerr.write(what.data(), what.size());
std::cerr << std::endl;
#endif
lua_pushlstring(L, what.data(), what.size());
return 1;
}
inline int call_exception_handler(lua_State* L, optional<const std::exception&> maybe_ex, string_view what) {
lua_getglobal(L, default_exception_handler_name());
type t = static_cast<type>(lua_type(L, -1));
if (t != type::lightuserdata) {
lua_pop(L, 1);
return default_exception_handler(L, std::move(maybe_ex), std::move(what));
}
void* vfunc = lua_touserdata(L, -1);
lua_pop(L, 1);
if (vfunc == nullptr) {
return default_exception_handler(L, std::move(maybe_ex), std::move(what));
}
exception_handler_function exfunc = reinterpret_cast<exception_handler_function>(vfunc);
return exfunc(L, std::move(maybe_ex), std::move(what));
}
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
template <lua_CFunction f>
int static_trampoline(lua_State* L) noexcept {
return f(L);
}
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
template <lua_CFunction_noexcept f>
int static_trampoline_noexcept(lua_State* L) noexcept {
return f(L);
}
#else
template <lua_CFunction f>
int static_trampoline_noexcept(lua_State* L) noexcept {
return f(L);
}
#endif
template <typename Fx, typename... Args>
int trampoline(lua_State* L, Fx&& f, Args&&... args) noexcept {
return f(L, std::forward<Args>(args)...);
}
inline int c_trampoline(lua_State* L, lua_CFunction f) noexcept {
return trampoline(L, f);
}
#else
inline int lua_cfunction_trampoline(lua_State* L, lua_CFunction f) {
#if SOL_IS_ON(SOL_PROPAGATE_EXCEPTIONS_I_)
return f(L);
#else
try {
return f(L);
}
catch (const char* cs) {
call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs));
}
catch (const std::string& s) {
call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size()));
}
catch (const std::exception& e) {
call_exception_handler(L, optional<const std::exception&>(e), e.what());
}
#if SOL_IS_OFF(SOL_USE_LUAJIT_I_)
// LuaJIT cannot have the catchall when the safe propagation is on
// but LuaJIT will swallow all C++ errors
// if we don't at least catch std::exception ones
catch (...) {
call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception");
}
#endif // LuaJIT cannot have the catchall, but we must catch std::exceps for it
return lua_error(L);
#endif // Safe exceptions
}
template <lua_CFunction f>
int static_trampoline(lua_State* L) {
return lua_cfunction_trampoline(L, f);
}
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
template <lua_CFunction_noexcept f>
int static_trampoline_noexcept(lua_State* L) noexcept {
return f(L);
}
#else
template <lua_CFunction f>
int static_trampoline_noexcept(lua_State* L) noexcept {
return f(L);
}
#endif
template <typename Fx, typename... Args>
int trampoline(lua_State* L, Fx&& f, Args&&... args) {
if constexpr (meta::bind_traits<meta::unqualified_t<Fx>>::is_noexcept) {
return f(L, std::forward<Args>(args)...);
}
else {
#if SOL_IS_ON(SOL_PROPAGATE_EXCEPTIONS_I_)
return f(L, std::forward<Args>(args)...);
#else
try {
return f(L, std::forward<Args>(args)...);
}
catch (const char* cs) {
call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs));
}
catch (const std::string& s) {
call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size()));
}
catch (const std::exception& e) {
call_exception_handler(L, optional<const std::exception&>(e), e.what());
}
#if SOL_IS_OFF(SOL_USE_LUAJIT_I_)
// LuaJIT cannot have the catchall when the safe propagation is on
// but LuaJIT will swallow all C++ errors
// if we don't at least catch std::exception ones
catch (...) {
call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception");
}
#endif
return lua_error(L);
#endif
}
}
inline int c_trampoline(lua_State* L, lua_CFunction f) {
return trampoline(L, f);
}
#endif // Exceptions vs. No Exceptions
template <typename F, F fx>
inline int typed_static_trampoline(lua_State* L) {
if constexpr (meta::bind_traits<F>::is_noexcept) {
return static_trampoline_noexcept<fx>(L);
}
else {
return static_trampoline<fx>(L);
}
}
} // namespace detail
inline void set_default_exception_handler(lua_State* L, exception_handler_function exf = &detail::default_exception_handler) {
static_assert(sizeof(void*) >= sizeof(exception_handler_function),
"void* storage is too small to transport the exception handler: please file a bug on the sol2 issue tracker to get this looked at!");
void* storage;
std::memcpy(&storage, &exf, sizeof(exception_handler_function));
lua_pushlightuserdata(L, storage);
lua_setglobal(L, detail::default_exception_handler_name());
}
} // namespace sol
// end of sol/trampoline.hpp
// beginning of sol/stack_core.hpp
// beginning of sol/inheritance.hpp
// beginning of sol/usertype_traits.hpp
// beginning of sol/demangle.hpp
#include <string>
#include <array>
#include <cctype>
#if SOL_IS_ON(SOL_MINGW_CCTYPE_IS_POISONED_I_)
extern "C" {
#include <ctype.h>
}
#endif // MinGW is on some stuff
#include <locale>
namespace sol { namespace detail {
inline constexpr std::array<string_view, 9> removals { { "{anonymous}",
"(anonymous namespace)",
"public:",
"private:",
"protected:",
"struct ",
"class ",
"`anonymous-namespace'",
"`anonymous namespace'" } };
#if SOL_IS_ON(SOL_COMPILER_GCC_I_) || SOL_IS_ON(SOL_COMPILER_CLANG_I_)
inline std::string ctti_get_type_name_from_sig(std::string name) {
// cardinal sins from MINGW
using namespace std;
std::size_t start = name.find_first_of('[');
start = name.find_first_of('=', start);
std::size_t end = name.find_last_of(']');
if (end == std::string::npos)
end = name.size();
if (start == std::string::npos)
start = 0;
if (start < name.size() - 1)
start += 1;
name = name.substr(start, end - start);
start = name.rfind("seperator_mark");
if (start != std::string::npos) {
name.erase(start - 2, name.length());
}
while (!name.empty() && isblank(name.front()))
name.erase(name.begin());
while (!name.empty() && isblank(name.back()))
name.pop_back();
for (std::size_t r = 0; r < removals.size(); ++r) {
auto found = name.find(removals[r]);
while (found != std::string::npos) {
name.erase(found, removals[r].size());
found = name.find(removals[r]);
}
}
return name;
}
template <typename T, class seperator_mark = int>
inline std::string ctti_get_type_name() {
return ctti_get_type_name_from_sig(__PRETTY_FUNCTION__);
}
#elif SOL_IS_ON(SOL_COMPILER_VCXX_I_)
inline std::string ctti_get_type_name_from_sig(std::string name) {
std::size_t start = name.find("get_type_name");
if (start == std::string::npos)
start = 0;
else
start += 13;
if (start < name.size() - 1)
start += 1;
std::size_t end = name.find_last_of('>');
if (end == std::string::npos)
end = name.size();
name = name.substr(start, end - start);
if (name.find("struct", 0) == 0)
name.replace(0, 6, "", 0);
if (name.find("class", 0) == 0)
name.replace(0, 5, "", 0);
while (!name.empty() && isblank(name.front()))
name.erase(name.begin());
while (!name.empty() && isblank(name.back()))
name.pop_back();
for (std::size_t r = 0; r < removals.size(); ++r) {
auto found = name.find(removals[r]);
while (found != std::string::npos) {
name.erase(found, removals[r].size());
found = name.find(removals[r]);
}
}
return name;
}
template <typename T>
std::string ctti_get_type_name() {
return ctti_get_type_name_from_sig(__FUNCSIG__);
}
#else
#error Compiler not supported for demangling
#endif // compilers
template <typename T>
std::string demangle_once() {
std::string realname = ctti_get_type_name<T>();
return realname;
}
inline std::string short_demangle_from_type_name(std::string realname) {
// This isn't the most complete but it'll do for now...?
static const std::array<std::string, 10> ops = {
{ "operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*" }
};
int level = 0;
std::ptrdiff_t idx = 0;
for (idx = static_cast<std::ptrdiff_t>(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) {
if (level == 0 && realname[idx] == ':') {
break;
}
bool isleft = realname[idx] == '<';
bool isright = realname[idx] == '>';
if (!isleft && !isright)
continue;
bool earlybreak = false;
for (const auto& op : ops) {
std::size_t nisop = realname.rfind(op, idx);
if (nisop == std::string::npos)
continue;
std::size_t nisopidx = idx - op.size() + 1;
if (nisop == nisopidx) {
idx = static_cast<std::ptrdiff_t>(nisopidx);
earlybreak = true;
}
break;
}
if (earlybreak) {
continue;
}
level += isleft ? -1 : 1;
}
if (idx > 0) {
realname.erase(0, realname.length() < static_cast<std::size_t>(idx) ? realname.length() : idx + 1);
}
return realname;
}
template <typename T>
std::string short_demangle_once() {
std::string realname = ctti_get_type_name<T>();
return short_demangle_from_type_name(realname);
}
template <typename T>
const std::string& demangle() {
static const std::string d = demangle_once<T>();
return d;
}
template <typename T>
const std::string& short_demangle() {
static const std::string d = short_demangle_once<T>();
return d;
}
}} // namespace sol::detail
// end of sol/demangle.hpp
namespace sol {
template <typename T>
struct usertype_traits {
static const std::string& name() {
static const std::string& n = detail::short_demangle<T>();
return n;
}
static const std::string& qualified_name() {
static const std::string& q_n = detail::demangle<T>();
return q_n;
}
static const std::string& metatable() {
static const std::string m = std::string("sol.").append(detail::demangle<T>());
return m;
}
static const std::string& user_metatable() {
static const std::string u_m = std::string("sol.").append(detail::demangle<T>()).append(".user");
return u_m;
}
static const std::string& user_gc_metatable() {
static const std::string u_g_m = std::string("sol.").append(detail::demangle<T>()).append(".user\xE2\x99\xBB");
return u_g_m;
}
static const std::string& gc_table() {
static const std::string g_t = std::string("sol.").append(detail::demangle<T>()).append(".\xE2\x99\xBB");
return g_t;
}
};
} // namespace sol
// end of sol/usertype_traits.hpp
// beginning of sol/unique_usertype_traits.hpp
#include <memory>
namespace sol {
template <typename T>
struct unique_usertype_traits {
typedef T type;
typedef T actual_type;
template <typename X>
using rebind_base = void;
static const bool value = false;
template <typename U>
static bool is_null(U&&) {
return false;
}
template <typename U>
static auto get(U&& value) {
return std::addressof(detail::deref(value));
}
};
template <typename T>
struct unique_usertype_traits<std::shared_ptr<T>> {
typedef T type;
typedef std::shared_ptr<T> actual_type;
// rebind is non-void
// if and only if unique usertype
// is cast-capable
template <typename X>
using rebind_base = std::shared_ptr<X>;
static const bool value = true;
static bool is_null(const actual_type& p) {
return p == nullptr;
}
static type* get(const actual_type& p) {
return p.get();
}
};
template <typename T, typename D>
struct unique_usertype_traits<std::unique_ptr<T, D>> {
using type = T;
using actual_type = std::unique_ptr<T, D>;
static const bool value = true;
static bool is_null(const actual_type& p) {
return p == nullptr;
}
static type* get(const actual_type& p) {
return p.get();
}
};
template <typename T>
struct is_unique_usertype : std::integral_constant<bool, unique_usertype_traits<T>::value> {};
template <typename T>
inline constexpr bool is_unique_usertype_v = is_unique_usertype<T>::value;
namespace detail {
template <typename T, typename Rebind = void>
using is_base_rebindable_test = typename T::template rebind_base<Rebind>;
}
template <typename T>
using is_base_rebindable = meta::is_detected<detail::is_base_rebindable_test, T>;
template <typename T>
inline constexpr bool is_base_rebindable_v = is_base_rebindable<T>::value;
namespace detail {
template <typename T, typename = void>
struct is_base_rebindable_non_void_sfinae : std::false_type {};
template <typename T>
struct is_base_rebindable_non_void_sfinae<T, std::enable_if_t<is_base_rebindable_v<T>>>
: std::integral_constant<bool, !std::is_void_v<typename T::template rebind_base<void>>> {};
} // namespace detail
template <typename T>
using is_base_rebindable_non_void = meta::is_detected<detail::is_base_rebindable_test, T>;
template <typename T>
inline constexpr bool is_base_rebindable_non_void_v = is_base_rebindable_non_void<T>::value;
} // namespace sol
// end of sol/unique_usertype_traits.hpp
namespace sol {
template <typename... Args>
struct base_list {};
template <typename... Args>
using bases = base_list<Args...>;
typedef bases<> base_classes_tag;
const auto base_classes = base_classes_tag();
template <typename... Args>
struct is_to_stringable<base_list<Args...>> : std::false_type {};
namespace detail {
inline decltype(auto) base_class_check_key() {
static const auto& key = "class_check";
return key;
}
inline decltype(auto) base_class_cast_key() {
static const auto& key = "class_cast";
return key;
}
inline decltype(auto) base_class_index_propogation_key() {
static const auto& key = u8"\xF0\x9F\x8C\xB2.index";
return key;
}
inline decltype(auto) base_class_new_index_propogation_key() {
static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index";
return key;
}
template <typename T>
struct inheritance {
typedef typename base<T>::type bases_t;
static bool type_check_bases(types<>, const string_view&) {
return false;
}
template <typename Base, typename... Args>
static bool type_check_bases(types<Base, Args...>, const string_view& ti) {
return ti == usertype_traits<Base>::qualified_name() || type_check_bases(types<Args...>(), ti);
}
static bool type_check(const string_view& ti) {
return ti == usertype_traits<T>::qualified_name() || type_check_bases(bases_t(), ti);
}
template <typename ...Bases>
static bool type_check_with(const string_view& ti) {
return ti == usertype_traits<T>::qualified_name() || type_check_bases(types<Bases...>(), ti);
}
static void* type_cast_bases(types<>, T*, const string_view&) {
return nullptr;
}
template <typename Base, typename... Args>
static void* type_cast_bases(types<Base, Args...>, T* data, const string_view& ti) {
// Make sure to convert to T first, and then dynamic cast to the proper type
return ti != usertype_traits<Base>::qualified_name() ? type_cast_bases(types<Args...>(), data, ti) : static_cast<void*>(static_cast<Base*>(data));
}
static void* type_cast(void* voiddata, const string_view& ti) {
T* data = static_cast<T*>(voiddata);
return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(bases_t(), data, ti) : data);
}
template <typename... Bases>
static void* type_cast_with(void* voiddata, const string_view& ti) {
T* data = static_cast<T*>(voiddata);
return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(types<Bases...>(), data, ti) : data);
}
template <typename U>
static bool type_unique_cast_bases(types<>, void*, void*, const string_view&) {
return 0;
}
template <typename U, typename Base, typename... Args>
static int type_unique_cast_bases(types<Base, Args...>, void* source_data, void* target_data, const string_view& ti) {
using uu_traits = unique_usertype_traits<U>;
using base_ptr = typename uu_traits::template rebind_base<Base>;
string_view base_ti = usertype_traits<Base>::qualified_name();
if (base_ti == ti) {
if (target_data != nullptr) {
U* source = static_cast<U*>(source_data);
base_ptr* target = static_cast<base_ptr*>(target_data);
// perform proper derived -> base conversion
*target = *source;
}
return 2;
}
return type_unique_cast_bases<U>(types<Args...>(), source_data, target_data, ti);
}
template <typename U>
static int type_unique_cast(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) {
typedef unique_usertype_traits<U> uu_traits;
if constexpr (is_base_rebindable_v<uu_traits>) {
typedef typename uu_traits::template rebind_base<void> rebind_t;
typedef meta::conditional_t<std::is_void<rebind_t>::value, types<>, bases_t> cond_bases_t;
string_view this_rebind_ti = usertype_traits<rebind_t>::qualified_name();
if (rebind_ti != this_rebind_ti) {
// this is not even of the same unique type
return 0;
}
string_view this_ti = usertype_traits<T>::qualified_name();
if (ti == this_ti) {
// direct match, return 1
return 1;
}
return type_unique_cast_bases<U>(cond_bases_t(), source_data, target_data, ti);
}
else {
(void)rebind_ti;
string_view this_ti = usertype_traits<T>::qualified_name();
if (ti == this_ti) {
// direct match, return 1
return 1;
}
return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti);
}
}
template <typename U, typename... Bases>
static int type_unique_cast_with(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) {
using uc_bases_t = types<Bases...>;
typedef unique_usertype_traits<U> uu_traits;
if constexpr (is_base_rebindable_v<uu_traits>) {
using rebind_t = typename uu_traits::template rebind_base<void>;
using cond_bases_t = meta::conditional_t<std::is_void<rebind_t>::value, types<>, uc_bases_t>;
string_view this_rebind_ti = usertype_traits<rebind_t>::qualified_name();
if (rebind_ti != this_rebind_ti) {
// this is not even of the same unique type
return 0;
}
string_view this_ti = usertype_traits<T>::qualified_name();
if (ti == this_ti) {
// direct match, return 1
return 1;
}
return type_unique_cast_bases<U>(cond_bases_t(), source_data, target_data, ti);
}
else {
(void)rebind_ti;
string_view this_ti = usertype_traits<T>::qualified_name();
if (ti == this_ti) {
// direct match, return 1
return 1;
}
return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti);
}
}
};
using inheritance_check_function = decltype(&inheritance<void>::type_check);
using inheritance_cast_function = decltype(&inheritance<void>::type_cast);
using inheritance_unique_cast_function = decltype(&inheritance<void>::type_unique_cast<void>);
} // namespace detail
} // namespace sol
// end of sol/inheritance.hpp
// beginning of sol/error_handler.hpp
#include <cstdio>
namespace sol {
namespace detail {
constexpr const char* not_a_number = "not a numeric type";
constexpr const char* not_a_number_or_number_string = "not a numeric type or numeric string";
constexpr const char* not_a_number_integral = "not a numeric type that fits exactly an integer (number maybe has significant decimals)";
constexpr const char* not_a_number_or_number_string_integral
= "not a numeric type or a numeric string that fits exactly an integer (e.g. number maybe has significant decimals)";
constexpr const char* not_enough_stack_space = "not enough space left on Lua stack";
constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number";
constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number";
constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string";
constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function";
constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol3 userdata";
constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees";
constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment";
constexpr const char* protected_function_error = "caught (...) unknown error during protected_function call";
inline void accumulate_and_mark(const std::string& n, std::string& aux_message, int& marker) {
if (marker > 0) {
aux_message += ", ";
}
aux_message += n;
++marker;
}
} // namespace detail
inline std::string associated_type_name(lua_State* L, int index, type t) {
switch (t) {
case type::poly:
return "anything";
case type::userdata: {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 2, "not enough space to push get the type name");
#endif // make sure stack doesn't overflow
if (lua_getmetatable(L, index) == 0) {
break;
}
lua_pushlstring(L, "__name", 6);
lua_rawget(L, -2);
size_t sz;
const char* name = lua_tolstring(L, -1, &sz);
std::string tn(name, static_cast<std::string::size_type>(sz));
lua_pop(L, 2);
return tn;
}
default:
break;
}
return lua_typename(L, static_cast<int>(t));
}
inline int push_type_panic_string(lua_State* L, int index, type expected, type actual, string_view message, string_view aux_message) noexcept {
const char* err = message.size() == 0
? (aux_message.size() == 0 ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s")
: "stack index %d, expected %s, received %s: %s %s";
const char* type_name = expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected));
{
std::string actual_name = associated_type_name(L, index, actual);
lua_pushfstring(L, err, index, type_name, actual_name.c_str(), message.data(), aux_message.data());
}
return 1;
}
inline int type_panic_string(lua_State* L, int index, type expected, type actual, string_view message = "") noexcept(false) {
push_type_panic_string(L, index, expected, actual, message, "");
return lua_error(L);
}
inline int type_panic_c_str(lua_State* L, int index, type expected, type actual, const char* message = nullptr) noexcept(false) {
push_type_panic_string(L, index, expected, actual, message == nullptr ? "" : message, "");
return lua_error(L);
}
struct type_panic_t {
int operator()(lua_State* L, int index, type expected, type actual) const noexcept(false) {
return type_panic_c_str(L, index, expected, actual, nullptr);
}
int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
return type_panic_c_str(L, index, expected, actual, message.data());
}
};
const type_panic_t type_panic = {};
struct constructor_handler {
int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
push_type_panic_string(L, index, expected, actual, message, "(type check failed in constructor)");
return lua_error(L);
}
};
template <typename F = void>
struct argument_handler {
int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
push_type_panic_string(L, index, expected, actual, message, "(bad argument to variable or function call)");
return lua_error(L);
}
};
template <typename R, typename... Args>
struct argument_handler<types<R, Args...>> {
int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
{
std::string aux_message = "(bad argument into '";
aux_message += detail::demangle<R>();
aux_message += "(";
int marker = 0;
(void)detail::swallow { int(), (detail::accumulate_and_mark(detail::demangle<Args>(), aux_message, marker), int())... };
aux_message += ")')";
push_type_panic_string(L, index, expected, actual, message, aux_message);
}
return lua_error(L);
}
};
// Specify this function as the handler for lua::check if you know there's nothing wrong
inline int no_panic(lua_State*, int, type, type, const char* = nullptr) noexcept {
return 0;
}
inline void type_error(lua_State* L, int expected, int actual) noexcept(false) {
luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual));
}
inline void type_error(lua_State* L, type expected, type actual) noexcept(false) {
type_error(L, static_cast<int>(expected), static_cast<int>(actual));
}
inline void type_assert(lua_State* L, int index, type expected, type actual) noexcept(false) {
if (expected != type::poly && expected != actual) {
type_panic_c_str(L, index, expected, actual, nullptr);
}
}
inline void type_assert(lua_State* L, int index, type expected) {
type actual = type_of(L, index);
type_assert(L, index, expected, actual);
}
} // namespace sol
// end of sol/error_handler.hpp
// beginning of sol/reference.hpp
// beginning of sol/stack_reference.hpp
namespace sol {
namespace detail {
inline bool xmovable(lua_State* leftL, lua_State* rightL) {
if (rightL == nullptr || leftL == nullptr || leftL == rightL) {
return false;
}
const void* leftregistry = lua_topointer(leftL, LUA_REGISTRYINDEX);
const void* rightregistry = lua_topointer(rightL, LUA_REGISTRYINDEX);
return leftregistry == rightregistry;
}
} // namespace detail
class stateless_stack_reference {
private:
friend class stack_reference;
int index = 0;
int registry_index() const noexcept {
return LUA_NOREF;
}
public:
stateless_stack_reference() noexcept = default;
stateless_stack_reference(lua_nil_t) noexcept : stateless_stack_reference(){};
stateless_stack_reference(lua_State* L, int i) noexcept : stateless_stack_reference(absolute_index(L, i)) {
}
stateless_stack_reference(lua_State*, absolute_index i) noexcept : stateless_stack_reference(i) {
}
stateless_stack_reference(lua_State*, raw_index i) noexcept : stateless_stack_reference(i) {
}
stateless_stack_reference(absolute_index i) noexcept : index(i) {
}
stateless_stack_reference(raw_index i) noexcept : index(i) {
}
stateless_stack_reference(lua_State*, ref_index) noexcept = delete;
stateless_stack_reference(ref_index) noexcept = delete;
stateless_stack_reference(const reference&) noexcept = delete;
stateless_stack_reference(const stateless_stack_reference&) noexcept = default;
stateless_stack_reference(stateless_stack_reference&& o) noexcept = default;
stateless_stack_reference& operator=(stateless_stack_reference&&) noexcept = default;
stateless_stack_reference& operator=(const stateless_stack_reference&) noexcept = default;
int push(lua_State* L) const noexcept {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, "not enough Lua stack space to push a single reference value");
#endif // make sure stack doesn't overflow
lua_pushvalue(L, index);
return 1;
}
void pop(lua_State* L, int n = 1) const noexcept {
lua_pop(L, n);
}
int stack_index() const noexcept {
return index;
}
const void* pointer(lua_State* L) const noexcept {
const void* vp = lua_topointer(L, stack_index());
return vp;
}
type get_type(lua_State* L) const noexcept {
int result = lua_type(L, index);
return static_cast<type>(result);
}
bool valid(lua_State* L) const noexcept {
type t = get_type(L);
return t != type::lua_nil && t != type::none;
}
void abandon(lua_State* = nullptr) {
index = 0;
}
};
class stack_reference : public stateless_stack_reference {
private:
lua_State* luastate = nullptr;
public:
stack_reference() noexcept = default;
stack_reference(lua_nil_t) noexcept
: stack_reference() {};
stack_reference(lua_State* L, lua_nil_t) noexcept : stateless_stack_reference(L, 0), luastate(L) {
}
stack_reference(lua_State* L, int i) noexcept : stateless_stack_reference(L, i), luastate(L) {
}
stack_reference(lua_State* L, absolute_index i) noexcept : stateless_stack_reference(L, i), luastate(L) {
}
stack_reference(lua_State* L, raw_index i) noexcept : stateless_stack_reference(L, i), luastate(L) {
}
stack_reference(lua_State* L, ref_index i) noexcept = delete;
stack_reference(lua_State* L, const reference& r) noexcept = delete;
stack_reference(lua_State* L, const stack_reference& r) noexcept
: luastate(L) {
if (!r.valid()) {
index = 0;
return;
}
int i = r.stack_index();
if (detail::xmovable(lua_state(), r.lua_state())) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, "not enough Lua stack space to push a single reference value");
#endif // make sure stack doesn't overflow
lua_pushvalue(r.lua_state(), r.index);
lua_xmove(r.lua_state(), luastate, 1);
i = absolute_index(luastate, -1);
}
index = i;
}
stack_reference(stack_reference&& o) noexcept = default;
stack_reference& operator=(stack_reference&&) noexcept = default;
stack_reference(const stack_reference&) noexcept = default;
stack_reference& operator=(const stack_reference&) noexcept = default;
int push() const noexcept {
return push(lua_state());
}
int push(lua_State* Ls) const noexcept {
return stateless_stack_reference::push(Ls);
}
void pop() const noexcept {
pop(lua_state());
}
void pop(lua_State* Ls, int n = 1) const noexcept {
stateless_stack_reference::pop(Ls, n);
}
const void* pointer() const noexcept {
return stateless_stack_reference::pointer(lua_state());
}
type get_type() const noexcept {
return stateless_stack_reference::get_type(lua_state());
}
lua_State* lua_state() const noexcept {
return luastate;
}
bool valid() const noexcept {
return stateless_stack_reference::valid(lua_state());
}
void abandon () {
stateless_stack_reference::abandon(lua_state());
}
};
inline bool operator==(const stack_reference& l, const stack_reference& r) {
return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 0;
}
inline bool operator!=(const stack_reference& l, const stack_reference& r) {
return !operator==(l, r);
}
inline bool operator==(const stack_reference& lhs, const lua_nil_t&) {
return !lhs.valid();
}
inline bool operator==(const lua_nil_t&, const stack_reference& rhs) {
return !rhs.valid();
}
inline bool operator!=(const stack_reference& lhs, const lua_nil_t&) {
return lhs.valid();
}
inline bool operator!=(const lua_nil_t&, const stack_reference& rhs) {
return rhs.valid();
}
struct stack_reference_equals {
bool operator()(const lua_nil_t& lhs, const stack_reference& rhs) const {
return lhs == rhs;
}
bool operator()(const stack_reference& lhs, const lua_nil_t& rhs) const {
return lhs == rhs;
}
bool operator()(const stack_reference& lhs, const stack_reference& rhs) const {
return lhs == rhs;
}
};
struct stack_reference_hash {
typedef stack_reference argument_type;
typedef std::size_t result_type;
result_type operator()(const argument_type& lhs) const {
std::hash<const void*> h;
return h(lhs.pointer());
}
};
} // namespace sol
// end of sol/stack_reference.hpp
#include <functional>
namespace sol {
namespace detail {
inline const char (&default_main_thread_name())[9] {
static const char name[9] = "sol.\xF0\x9F\x93\x8C";
return name;
}
} // namespace detail
namespace stack {
inline void remove(lua_State* L, int rawindex, int count) {
if (count < 1)
return;
int top = lua_gettop(L);
if (top < 1) {
return;
}
if (rawindex == -count || top == rawindex) {
// Slice them right off the top
lua_pop(L, static_cast<int>(count));
return;
}
// Remove each item one at a time using stack operations
// Probably slower, maybe, haven't benchmarked,
// but necessary
int index = lua_absindex(L, rawindex);
if (index < 0) {
index = lua_gettop(L) + (index + 1);
}
int last = index + count;
for (int i = index; i < last; ++i) {
lua_remove(L, index);
}
}
struct push_popper_at {
lua_State* L;
int index;
int count;
push_popper_at(lua_State* luastate, int index = -1, int count = 1) : L(luastate), index(index), count(count) {
}
~push_popper_at() {
remove(L, index, count);
}
};
template <bool top_level>
struct push_popper_n {
lua_State* L;
int t;
push_popper_n(lua_State* luastate, int x) : L(luastate), t(x) {
}
push_popper_n(const push_popper_n&) = delete;
push_popper_n(push_popper_n&&) = default;
push_popper_n& operator=(const push_popper_n&) = delete;
push_popper_n& operator=(push_popper_n&&) = default;
~push_popper_n() {
lua_pop(L, t);
}
};
template <>
struct push_popper_n<true> {
push_popper_n(lua_State*, int) {
}
};
template <bool, typename T, typename = void>
struct push_popper {
using Tu = meta::unqualified_t<T>;
T t;
int idx;
push_popper(T x) : t(x), idx(lua_absindex(t.lua_state(), -t.push())) {
}
int index_of(const Tu&) {
return idx;
}
~push_popper() {
t.pop();
}
};
template <typename T, typename C>
struct push_popper<true, T, C> {
using Tu = meta::unqualified_t<T>;
push_popper(T) {
}
int index_of(const Tu&) {
return -1;
}
~push_popper() {
}
};
template <typename T>
struct push_popper<false, T, std::enable_if_t<is_stack_based_v<meta::unqualified_t<T>>>> {
using Tu = meta::unqualified_t<T>;
push_popper(T) {
}
int index_of(const Tu& r) {
return r.stack_index();
}
~push_popper() {
}
};
template <bool top_level = false, typename T>
push_popper<top_level, T> push_pop(T&& x) {
return push_popper<top_level, T>(std::forward<T>(x));
}
template <typename T>
push_popper_at push_pop_at(T&& x) {
int c = x.push();
lua_State* L = x.lua_state();
return push_popper_at(L, lua_absindex(L, -c), c);
}
template <bool top_level = false>
push_popper_n<top_level> pop_n(lua_State* L, int x) {
return push_popper_n<top_level>(L, x);
}
} // namespace stack
inline lua_State* main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) {
#if SOL_LUA_VESION_I_ < 502
if (L == nullptr)
return backup_if_unsupported;
lua_getglobal(L, detail::default_main_thread_name());
auto pp = stack::pop_n(L, 1);
if (type_of(L, -1) == type::thread) {
return lua_tothread(L, -1);
}
return backup_if_unsupported;
#else
if (L == nullptr)
return backup_if_unsupported;
lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_MAINTHREAD);
lua_State* Lmain = lua_tothread(L, -1);
lua_pop(L, 1);
return Lmain;
#endif // Lua 5.2+ has the main thread unqualified_getter
}
namespace detail {
struct global_tag {
} const global_ {};
struct no_safety_tag {
} const no_safety {};
template <bool b>
inline lua_State* pick_main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) {
(void)L;
(void)backup_if_unsupported;
if (b) {
return main_thread(L, backup_if_unsupported);
}
return L;
}
} // namespace detail
class stateless_reference {
private:
template <bool o_main_only>
friend class basic_reference;
int ref = LUA_NOREF;
int copy(lua_State* L) const noexcept {
if (ref == LUA_NOREF)
return LUA_NOREF;
push(L);
return luaL_ref(L, LUA_REGISTRYINDEX);
}
lua_State* copy_assign(lua_State* L, lua_State* rL, const stateless_reference& r) {
if (valid(L)) {
deref(L);
}
ref = r.copy(L);
return rL;
}
lua_State* move_assign(lua_State* L, lua_State* rL, stateless_reference&& r) {
if (valid(L)) {
deref(L);
}
ref = r.ref;
r.ref = LUA_NOREF;
return rL;
}
protected:
int stack_index() const noexcept {
return -1;
}
stateless_reference(lua_State* L, detail::global_tag) noexcept {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value");
#endif // make sure stack doesn't overflow
lua_pushglobaltable(L);
ref = luaL_ref(L, LUA_REGISTRYINDEX);
}
stateless_reference(int raw_ref_index) noexcept : ref(raw_ref_index) {
}
public:
stateless_reference() noexcept = default;
stateless_reference(lua_nil_t) noexcept : stateless_reference() {
}
stateless_reference(const stack_reference& r) noexcept : stateless_reference(r.lua_state(), r.stack_index()) {
}
stateless_reference(stack_reference&& r) noexcept : stateless_reference(r.lua_state(), r.stack_index()) {
}
stateless_reference(lua_State* L, const stateless_reference& r) noexcept {
if (r.ref == LUA_REFNIL) {
ref = LUA_REFNIL;
return;
}
if (r.ref == LUA_NOREF || L == nullptr) {
ref = LUA_NOREF;
return;
}
ref = r.copy(L);
}
stateless_reference(lua_State* L, stateless_reference&& r) noexcept {
if (r.ref == LUA_REFNIL) {
ref = LUA_REFNIL;
return;
}
if (r.ref == LUA_NOREF || L == nullptr) {
ref = LUA_NOREF;
return;
}
ref = r.ref;
r.ref = LUA_NOREF;
}
stateless_reference(lua_State* L, const stack_reference& r) noexcept {
if (L == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) {
ref = LUA_NOREF;
return;
}
if (r.get_type() == type::lua_nil) {
ref = LUA_REFNIL;
return;
}
if (L != r.lua_state() && !detail::xmovable(L, r.lua_state())) {
return;
}
r.push(L);
ref = luaL_ref(L, LUA_REGISTRYINDEX);
}
stateless_reference(lua_State* L, int index = -1) noexcept {
// use L to stick with that state's execution stack
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value");
#endif // make sure stack doesn't overflow
lua_pushvalue(L, index);
ref = luaL_ref(L, LUA_REGISTRYINDEX);
}
stateless_reference(lua_State* L, ref_index index) noexcept {
lua_rawgeti(L, LUA_REGISTRYINDEX, index.index);
ref = luaL_ref(L, LUA_REGISTRYINDEX);
}
stateless_reference(lua_State*, lua_nil_t) noexcept {
}
~stateless_reference() noexcept = default;
stateless_reference(const stateless_reference& o) noexcept = delete;
stateless_reference& operator=(const stateless_reference& r) noexcept = delete;
stateless_reference(stateless_reference&& o) noexcept : ref(o.ref) {
o.ref = LUA_NOREF;
}
stateless_reference& operator=(stateless_reference&& o) noexcept {
ref = o.ref;
o.ref = LUA_NOREF;
return *this;
}
int push(lua_State* L) const noexcept {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value");
#endif // make sure stack doesn't overflow
lua_rawgeti(L, LUA_REGISTRYINDEX, ref);
return 1;
}
void pop(lua_State* L, int n = 1) const noexcept {
lua_pop(L, n);
}
int registry_index() const noexcept {
return ref;
}
bool valid(lua_State*) const noexcept {
return !(ref == LUA_NOREF || ref == LUA_REFNIL);
}
const void* pointer(lua_State* L) const noexcept {
int si = push(L);
const void* vp = lua_topointer(L, -si);
lua_pop(L, si);
return vp;
}
type get_type(lua_State* L) const noexcept {
int p = push(L);
int result = lua_type(L, -1);
pop(L, p);
return static_cast<type>(result);
}
void abandon(lua_State* = nullptr) {
ref = LUA_NOREF;
}
void deref(lua_State* L) const noexcept {
luaL_unref(L, LUA_REGISTRYINDEX, ref);
}
};
template <bool main_only = false>
class basic_reference : public stateless_reference {
private:
template <bool o_main_only>
friend class basic_reference;
lua_State* luastate = nullptr; // non-owning
template <bool r_main_only>
void copy_assign(const basic_reference<r_main_only>& r) {
if (valid()) {
deref();
}
if (r.ref == LUA_REFNIL) {
luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
ref = LUA_REFNIL;
return;
}
if (r.ref == LUA_NOREF) {
luastate = r.luastate;
ref = LUA_NOREF;
return;
}
if (detail::xmovable(lua_state(), r.lua_state())) {
r.push(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
return;
}
luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
ref = r.copy();
}
template <bool r_main_only>
void move_assign(basic_reference<r_main_only>&& r) {
if (valid()) {
deref();
}
if (r.ref == LUA_REFNIL) {
luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
ref = LUA_REFNIL;
return;
}
if (r.ref == LUA_NOREF) {
luastate = r.luastate;
ref = LUA_NOREF;
return;
}
if (detail::xmovable(lua_state(), r.lua_state())) {
r.push(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
return;
}
luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
ref = r.ref;
r.ref = LUA_NOREF;
r.luastate = nullptr;
}
protected:
basic_reference(lua_State* L, detail::global_tag) noexcept
: basic_reference(detail::pick_main_thread<main_only>(L, L), detail::global_, detail::global_) {
}
basic_reference(lua_State* L, detail::global_tag, detail::global_tag) noexcept : stateless_reference(L, detail::global_), luastate(L) {
}
basic_reference(lua_State* oL, const basic_reference<!main_only>& o) noexcept : stateless_reference(oL, o), luastate(oL) {
}
void deref() const noexcept {
return stateless_reference::deref(lua_state());
}
int copy() const noexcept {
return copy(lua_state());
}
int copy(lua_State* L) const noexcept {
return stateless_reference::copy(L);
}
public:
basic_reference() noexcept = default;
basic_reference(lua_nil_t) noexcept : basic_reference() {
}
basic_reference(const stack_reference& r) noexcept : basic_reference(r.lua_state(), r.stack_index()) {
}
basic_reference(stack_reference&& r) noexcept : basic_reference(r.lua_state(), r.stack_index()) {
}
template <bool r_main_only>
basic_reference(lua_State* L, const basic_reference<r_main_only>& r) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
if (r.ref == LUA_REFNIL) {
ref = LUA_REFNIL;
return;
}
if (r.ref == LUA_NOREF || lua_state() == nullptr) {
ref = LUA_NOREF;
return;
}
if (detail::xmovable(lua_state(), r.lua_state())) {
r.push(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
return;
}
ref = r.copy();
}
template <bool r_main_only>
basic_reference(lua_State* L, basic_reference<r_main_only>&& r) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
if (r.ref == LUA_REFNIL) {
ref = LUA_REFNIL;
return;
}
if (r.ref == LUA_NOREF || lua_state() == nullptr) {
ref = LUA_NOREF;
return;
}
if (detail::xmovable(lua_state(), r.lua_state())) {
r.push(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
return;
}
ref = r.ref;
r.ref = LUA_NOREF;
r.luastate = nullptr;
}
basic_reference(lua_State* L, const stack_reference& r) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
if (lua_state() == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) {
ref = LUA_NOREF;
return;
}
if (r.get_type() == type::lua_nil) {
ref = LUA_REFNIL;
return;
}
if (lua_state() != r.lua_state() && !detail::xmovable(lua_state(), r.lua_state())) {
return;
}
r.push(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
}
basic_reference(lua_State* L, int index = -1) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
// use L to stick with that state's execution stack
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value");
#endif // make sure stack doesn't overflow
lua_pushvalue(L, index);
ref = luaL_ref(L, LUA_REGISTRYINDEX);
}
basic_reference(lua_State* L, ref_index index) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, index.index);
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
}
basic_reference(lua_State* L, lua_nil_t) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
}
~basic_reference() noexcept {
if (lua_state() == nullptr || ref == LUA_NOREF)
return;
deref();
}
basic_reference(const basic_reference& o) noexcept : stateless_reference(o.copy()), luastate(o.lua_state()) {
}
basic_reference(basic_reference&& o) noexcept : stateless_reference(std::move(o)), luastate(o.lua_state()) {
o.luastate = nullptr;
}
basic_reference(const basic_reference<!main_only>& o) noexcept
: basic_reference(detail::pick_main_thread<main_only>(o.lua_state(), o.lua_state()), o) {
}
basic_reference(basic_reference<!main_only>&& o) noexcept
: stateless_reference(std::move(o)), luastate(detail::pick_main_thread<main_only>(o.lua_state(), o.lua_state())) {
o.luastate = nullptr;
o.ref = LUA_NOREF;
}
basic_reference& operator=(basic_reference&& r) noexcept {
move_assign(std::move(r));
return *this;
}
basic_reference& operator=(const basic_reference& r) noexcept {
copy_assign(r);
return *this;
}
basic_reference& operator=(basic_reference<!main_only>&& r) noexcept {
move_assign(std::move(r));
return *this;
}
basic_reference& operator=(const basic_reference<!main_only>& r) noexcept {
copy_assign(r);
return *this;
}
basic_reference& operator=(const lua_nil_t&) noexcept {
if (valid()) {
deref();
}
luastate = nullptr;
ref = LUA_NOREF;
return *this;
}
template <typename Super>
basic_reference& operator=(proxy_base<Super>&& r);
template <typename Super>
basic_reference& operator=(const proxy_base<Super>& r);
int push() const noexcept {
return push(lua_state());
}
int push(lua_State* L) const noexcept {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value");
#endif // make sure stack doesn't overflow
if (lua_state() == nullptr) {
lua_pushnil(L);
return 1;
}
lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, ref);
if (L != lua_state()) {
lua_xmove(lua_state(), L, 1);
}
return 1;
}
void pop() const noexcept {
pop(lua_state());
}
void pop(lua_State* L, int n = 1) const noexcept {
stateless_reference::pop(L, n);
}
int registry_index() const noexcept {
return stateless_reference::registry_index();
}
bool valid() const noexcept {
return stateless_reference::valid(lua_state());
}
const void* pointer() const noexcept {
return stateless_reference::pointer(lua_state());
}
explicit operator bool() const noexcept {
return valid();
}
type get_type() const noexcept {
return stateless_reference::get_type(lua_state());
}
lua_State* lua_state() const noexcept {
return luastate;
}
};
template <bool lb, bool rb>
inline bool operator==(const basic_reference<lb>& l, const basic_reference<rb>& r) {
auto ppl = stack::push_pop(l);
auto ppr = stack::push_pop(r);
return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1;
}
template <bool lb, bool rb>
inline bool operator!=(const basic_reference<lb>& l, const basic_reference<rb>& r) {
return !operator==(l, r);
}
template <bool lb>
inline bool operator==(const basic_reference<lb>& l, const stack_reference& r) {
auto ppl = stack::push_pop(l);
return lua_compare(l.lua_state(), -1, r.stack_index(), LUA_OPEQ) == 1;
}
template <bool lb>
inline bool operator!=(const basic_reference<lb>& l, const stack_reference& r) {
return !operator==(l, r);
}
template <bool rb>
inline bool operator==(const stack_reference& l, const basic_reference<rb>& r) {
auto ppr = stack::push_pop(r);
return lua_compare(l.lua_state(), -1, r.stack_index(), LUA_OPEQ) == 1;
}
template <bool rb>
inline bool operator!=(const stack_reference& l, const basic_reference<rb>& r) {
return !operator==(l, r);
}
template <bool lb>
inline bool operator==(const basic_reference<lb>& lhs, const lua_nil_t&) {
return !lhs.valid();
}
template <bool rb>
inline bool operator==(const lua_nil_t&, const basic_reference<rb>& rhs) {
return !rhs.valid();
}
template <bool lb>
inline bool operator!=(const basic_reference<lb>& lhs, const lua_nil_t&) {
return lhs.valid();
}
template <bool rb>
inline bool operator!=(const lua_nil_t&, const basic_reference<rb>& rhs) {
return rhs.valid();
}
struct reference_equals : public stack_reference_equals {
template <bool rb>
bool operator()(const lua_nil_t& lhs, const basic_reference<rb>& rhs) const {
return lhs == rhs;
}
template <bool lb>
bool operator()(const basic_reference<lb>& lhs, const lua_nil_t& rhs) const {
return lhs == rhs;
}
template <bool lb, bool rb>
bool operator()(const basic_reference<lb>& lhs, const basic_reference<rb>& rhs) const {
return lhs == rhs;
}
template <bool lb>
bool operator()(const basic_reference<lb>& lhs, const stack_reference& rhs) const {
return lhs == rhs;
}
template <bool rb>
bool operator()(const stack_reference& lhs, const basic_reference<rb>& rhs) const {
return lhs == rhs;
}
};
struct reference_hash : public stack_reference_hash {
typedef reference argument_type;
typedef std::size_t result_type;
template <bool lb>
result_type operator()(const basic_reference<lb>& lhs) const {
std::hash<const void*> h;
return h(lhs.pointer());
}
};
} // namespace sol
// end of sol/reference.hpp
// beginning of sol/tie.hpp
namespace sol {
namespace detail {
template <typename T>
struct is_speshul : std::false_type {};
} // namespace detail
template <typename T>
struct tie_size : std::tuple_size<T> {};
template <typename T>
struct is_tieable : std::integral_constant<bool, (::sol::tie_size<T>::value > 0)> {};
template <typename... Tn>
struct tie_t : public std::tuple<std::add_lvalue_reference_t<Tn>...> {
private:
typedef std::tuple<std::add_lvalue_reference_t<Tn>...> base_t;
template <typename T>
void set(std::false_type, T&& target) {
std::get<0>(*this) = std::forward<T>(target);
}
template <typename T>
void set(std::true_type, T&& target) {
typedef tie_size<meta::unqualified_t<T>> value_size;
typedef tie_size<std::tuple<Tn...>> tie_size;
typedef meta::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size;
typedef std::make_index_sequence<indices_size::value> indices;
set_extra(detail::is_speshul<meta::unqualified_t<T>>(), indices(), std::forward<T>(target));
}
template <std::size_t... I, typename T>
void set_extra(std::true_type, std::index_sequence<I...>, T&& target) {
using std::get;
(void)detail::swallow{0,
(get<I>(static_cast<base_t&>(*this)) = get<I>(types<Tn...>(), target), 0)..., 0};
}
template <std::size_t... I, typename T>
void set_extra(std::false_type, std::index_sequence<I...>, T&& target) {
using std::get;
(void)detail::swallow{0,
(get<I>(static_cast<base_t&>(*this)) = get<I>(target), 0)..., 0};
}
public:
using base_t::base_t;
template <typename T>
tie_t& operator=(T&& value) {
typedef is_tieable<meta::unqualified_t<T>> tieable;
set(tieable(), std::forward<T>(value));
return *this;
}
};
template <typename... Tn>
struct tie_size<tie_t<Tn...>> : std::tuple_size<std::tuple<Tn...>> {};
namespace adl_barrier_detail {
template <typename... Tn>
inline tie_t<std::remove_reference_t<Tn>...> tie(Tn&&... argn) {
return tie_t<std::remove_reference_t<Tn>...>(std::forward<Tn>(argn)...);
}
} // namespace adl_barrier_detail
using namespace adl_barrier_detail;
} // namespace sol
// end of sol/tie.hpp
// beginning of sol/stack_guard.hpp
#include <functional>
namespace sol {
namespace detail {
inline void stack_fail(int, int) {
#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS)
throw error(detail::direct_error, "imbalanced stack after operation finish");
#else
// Lol, what do you want, an error printout? :3c
// There's no sane default here. The right way would be C-style abort(), and that's not acceptable, so
// hopefully someone will register their own stack_fail thing for the `fx` parameter of stack_guard.
#endif // No Exceptions
}
} // namespace detail
struct stack_guard {
lua_State* L;
int top;
std::function<void(int, int)> on_mismatch;
stack_guard(lua_State* L) : stack_guard(L, lua_gettop(L)) {
}
stack_guard(lua_State* L, int top, std::function<void(int, int)> fx = detail::stack_fail) : L(L), top(top), on_mismatch(std::move(fx)) {
}
bool check_stack(int modification = 0) const {
int bottom = lua_gettop(L) + modification;
if (top == bottom) {
return true;
}
on_mismatch(top, bottom);
return false;
}
~stack_guard() {
check_stack();
}
};
} // namespace sol
// end of sol/stack_guard.hpp
#include <vector>
#include <bitset>
#include <forward_list>
#include <string>
#include <algorithm>
#include <sstream>
#include <optional>
namespace sol {
namespace detail {
struct with_function_tag { };
struct as_reference_tag { };
template <typename T>
struct as_pointer_tag { };
template <typename T>
struct as_value_tag { };
template <typename T>
struct as_unique_tag { };
template <typename T>
struct as_table_tag { };
using lua_reg_table = luaL_Reg[64];
using unique_destructor = void (*)(void*);
using unique_tag = detail::inheritance_unique_cast_function;
inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space, std::size_t& required_space) {
// this handels arbitrary alignments...
// make this into a power-of-2-only?
// actually can't: this is a C++14-compatible framework,
// power of 2 alignment is C++17
std::uintptr_t initial = reinterpret_cast<std::uintptr_t>(ptr);
std::uintptr_t offby = static_cast<std::uintptr_t>(initial % alignment);
std::uintptr_t padding = (alignment - offby) % alignment;
required_space += size + padding;
if (space < required_space) {
return nullptr;
}
ptr = static_cast<void*>(static_cast<char*>(ptr) + padding);
space -= padding;
return ptr;
}
inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space) {
std::size_t required_space = 0;
return align(alignment, size, ptr, space, required_space);
}
inline void align_one(std::size_t a, std::size_t s, void*& target_alignment) {
std::size_t space = (std::numeric_limits<std::size_t>::max)();
target_alignment = align(a, s, target_alignment, space);
target_alignment = static_cast<void*>(static_cast<char*>(target_alignment) + s);
}
template <typename... Args>
std::size_t aligned_space_for(void* alignment = nullptr) {
// use temporary storage to prevent strict UB shenanigans
char alignment_shim[(std::max)({ sizeof(Args)... }) + (std::max)({ alignof(Args)... })] {};
char* start = alignment == nullptr ? static_cast<char*>(alignment) : alignment_shim;
(void)detail::swallow { int {}, (align_one(std::alignment_of_v<Args>, sizeof(Args), alignment), int {})... };
return static_cast<char*>(alignment) - start;
}
inline void* align_usertype_pointer(void* ptr) {
using use_align = std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<void*>::value > 1)
#endif
>;
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<void*>::value, sizeof(void*), ptr, space);
}
template <bool pre_aligned = false, bool pre_shifted = false>
void* align_usertype_unique_destructor(void* ptr) {
using use_align = std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<unique_destructor>::value > 1)
#endif
>;
if (!pre_aligned) {
ptr = align_usertype_pointer(ptr);
}
if (!pre_shifted) {
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*));
}
if (!use_align::value) {
return static_cast<void*>(static_cast<void**>(ptr) + 1);
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), ptr, space);
}
template <bool pre_aligned = false, bool pre_shifted = false>
void* align_usertype_unique_tag(void* ptr) {
using use_align = std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<unique_tag>::value > 1)
#endif
>;
if (!pre_aligned) {
ptr = align_usertype_unique_destructor(ptr);
}
if (!pre_shifted) {
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor));
}
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<unique_tag>::value, sizeof(unique_tag), ptr, space);
}
template <typename T, bool pre_aligned = false, bool pre_shifted = false>
void* align_usertype_unique(void* ptr) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of_v<T> > 1)
#endif
>
use_align;
if (!pre_aligned) {
ptr = align_usertype_unique_tag(ptr);
}
if (!pre_shifted) {
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_tag));
}
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of_v<T>, sizeof(T), ptr, space);
}
template <typename T>
void* align_user(void* ptr) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of_v<T> > 1)
#endif
>
use_align;
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of_v<T>, sizeof(T), ptr, space);
}
template <typename T>
T** usertype_allocate_pointer(lua_State* L) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<T*>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*)));
return pointerpointer;
}
static const std::size_t initial_size = aligned_space_for<T*>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T*>(reinterpret_cast<void*>(0x1));
std::size_t allocated_size = initial_size;
void* unadjusted = lua_newuserdata(L, initial_size);
void* adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
if (adjusted == nullptr) {
lua_pop(L, 1);
// what kind of absolute garbage trash allocator are we dealing with?
// whatever, add some padding in the case of MAXIMAL alignment waste...
allocated_size = misaligned_size;
unadjusted = lua_newuserdata(L, allocated_size);
adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
if (adjusted == nullptr) {
// trash allocator can burn in hell
lua_pop(L, 1);
// luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a
// worse job than malloc/realloc and should go read some books, yeah?");
luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data());
}
}
return static_cast<T**>(adjusted);
}
inline bool attempt_alloc(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t value_align, std::size_t value_size,
std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) {
void* adjusted = lua_newuserdata(L, allocated_size);
pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size);
if (pointer_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
// subtract size of what we're going to allocate there
allocated_size -= ptr_size;
adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
data_adjusted = align(value_align, value_size, adjusted, allocated_size);
if (data_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
return true;
}
inline bool attempt_alloc_unique(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t real_align, std::size_t real_size,
std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& id_adjusted, void*& data_adjusted) {
void* adjusted = lua_newuserdata(L, allocated_size);
pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size);
if (pointer_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= ptr_size;
adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
dx_adjusted = align(std::alignment_of_v<unique_destructor>, sizeof(unique_destructor), adjusted, allocated_size);
if (dx_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= sizeof(unique_destructor);
adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor));
id_adjusted = align(std::alignment_of_v<unique_tag>, sizeof(unique_tag), adjusted, allocated_size);
if (id_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= sizeof(unique_tag);
adjusted = static_cast<void*>(static_cast<char*>(id_adjusted) + sizeof(unique_tag));
data_adjusted = align(real_align, real_size, adjusted, allocated_size);
if (data_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
return true;
}
template <typename T>
T* usertype_allocate(lua_State* L) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<T*>::value > 1 || std::alignment_of_v<T> > 1)
#endif
>
use_align;
if (!use_align::value) {
T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& pointerreference = *pointerpointer;
T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
pointerreference = allocationtarget;
return allocationtarget;
}
/* the assumption is that `lua_newuserdata` -- unless someone
passes a specific lua_Alloc that gives us bogus, un-aligned pointers
-- uses malloc, which tends to hand out more or less aligned pointers to memory
(most of the time, anyhow)
but it's not guaranteed, so we have to do a post-adjustment check and increase padding
we do this preliminarily with compile-time stuff, to see
if we strike lucky with the allocator and alignment values
otherwise, we have to re-allocate the userdata and
over-allocate some space for additional padding because
compilers are optimized for aligned reads/writes
(and clang will barf UBsan errors on us for not being aligned)
*/
static const std::size_t initial_size = aligned_space_for<T*, T>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T*, T>(reinterpret_cast<void*>(0x1));
void* pointer_adjusted;
void* data_adjusted;
bool result
= attempt_alloc(L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), initial_size, pointer_adjusted, data_adjusted);
if (!result) {
// we're likely to get something that fails to perform the proper allocation a second time,
// so we use the suggested_new_size bump to help us out here
pointer_adjusted = nullptr;
data_adjusted = nullptr;
result = attempt_alloc(
L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), misaligned_size, pointer_adjusted, data_adjusted);
if (!result) {
if (pointer_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
}
else {
luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
}
return nullptr;
}
}
T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted);
T*& pointerreference = *pointerpointer;
T* allocationtarget = reinterpret_cast<T*>(data_adjusted);
pointerreference = allocationtarget;
return allocationtarget;
}
template <typename T, typename Real>
Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx, unique_tag*& id) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<T*>::value > 1 || std::alignment_of<unique_tag>::value > 1 || std::alignment_of<unique_destructor>::value > 1
|| std::alignment_of<Real>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(unique_tag) + sizeof(Real)));
dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1));
id = static_cast<unique_tag*>(static_cast<void*>(dx + 1));
Real* mem = static_cast<Real*>(static_cast<void*>(id + 1));
return mem;
}
static const std::size_t initial_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(reinterpret_cast<void*>(0x1));
void* pointer_adjusted;
void* dx_adjusted;
void* id_adjusted;
void* data_adjusted;
bool result = attempt_alloc_unique(L,
std::alignment_of_v<T*>,
sizeof(T*),
std::alignment_of_v<Real>,
sizeof(Real),
initial_size,
pointer_adjusted,
dx_adjusted,
id_adjusted,
data_adjusted);
if (!result) {
// we're likely to get something that fails to perform the proper allocation a second time,
// so we use the suggested_new_size bump to help us out here
pointer_adjusted = nullptr;
dx_adjusted = nullptr;
id_adjusted = nullptr;
data_adjusted = nullptr;
result = attempt_alloc_unique(L,
std::alignment_of_v<T*>,
sizeof(T*),
std::alignment_of_v<Real>,
sizeof(Real),
misaligned_size,
pointer_adjusted,
dx_adjusted,
id_adjusted,
data_adjusted);
if (!result) {
if (pointer_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
}
else if (dx_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<T>().c_str());
}
else {
luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
}
return nullptr;
}
}
pref = static_cast<T**>(pointer_adjusted);
dx = static_cast<detail::unique_destructor*>(dx_adjusted);
id = static_cast<unique_tag*>(id_adjusted);
Real* mem = static_cast<Real*>(data_adjusted);
return mem;
}
template <typename T>
T* user_allocate(lua_State* L) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of_v<T> > 1)
#endif
>
use_align;
if (!use_align::value) {
T* pointer = static_cast<T*>(lua_newuserdata(L, sizeof(T)));
return pointer;
}
static const std::size_t initial_size = aligned_space_for<T>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T>(reinterpret_cast<void*>(0x1));
std::size_t allocated_size = initial_size;
void* unadjusted = lua_newuserdata(L, allocated_size);
void* adjusted = align(std::alignment_of_v<T>, sizeof(T), unadjusted, allocated_size);
if (adjusted == nullptr) {
lua_pop(L, 1);
// try again, add extra space for alignment padding
allocated_size = misaligned_size;
unadjusted = lua_newuserdata(L, allocated_size);
adjusted = align(std::alignment_of_v<T>, sizeof(T), unadjusted, allocated_size);
if (adjusted == nullptr) {
lua_pop(L, 1);
luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data());
}
}
return static_cast<T*>(adjusted);
}
template <typename T>
int usertype_alloc_destruct(lua_State* L) {
void* memory = lua_touserdata(L, 1);
memory = align_usertype_pointer(memory);
T** pdata = static_cast<T**>(memory);
T* data = *pdata;
std::allocator<T> alloc {};
std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
return 0;
}
template <typename T>
int unique_destruct(lua_State* L) {
void* memory = lua_touserdata(L, 1);
memory = align_usertype_unique_destructor(memory);
unique_destructor& dx = *static_cast<unique_destructor*>(memory);
memory = align_usertype_unique_tag<true>(memory);
(dx)(memory);
return 0;
}
template <typename T>
int user_alloc_destruct(lua_State* L) {
void* memory = lua_touserdata(L, 1);
memory = align_user<T>(memory);
T* data = static_cast<T*>(memory);
std::allocator<T> alloc;
std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
return 0;
}
template <typename T, typename Real>
void usertype_unique_alloc_destroy(void* memory) {
memory = align_usertype_unique<Real, true>(memory);
Real* target = static_cast<Real*>(memory);
std::allocator<Real> alloc;
std::allocator_traits<std::allocator<Real>>::destroy(alloc, target);
}
template <typename T>
int cannot_destruct(lua_State* L) {
return luaL_error(L,
"cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= "
"delete' and thusly this type is being destroyed without properly destructing, invoking undefined "
"behavior: please bind a usertype and specify a custom destructor to define the behavior properly",
detail::demangle<T>().data());
}
template <typename T>
void reserve(T&, std::size_t) {
}
template <typename T, typename Al>
void reserve(std::vector<T, Al>& vec, std::size_t hint) {
vec.reserve(hint);
}
template <typename T, typename Tr, typename Al>
void reserve(std::basic_string<T, Tr, Al>& str, std::size_t hint) {
str.reserve(hint);
}
inline bool property_always_true(meta_function) {
return true;
}
struct properties_enrollment_allowed {
int& times_through;
std::bitset<64>& properties;
automagic_enrollments& enrollments;
properties_enrollment_allowed(int& times, std::bitset<64>& props, automagic_enrollments& enroll)
: times_through(times), properties(props), enrollments(enroll) {
}
bool operator()(meta_function mf) const {
bool p = properties[static_cast<int>(mf)];
if (times_through > 0) {
return p;
}
switch (mf) {
case meta_function::length:
return enrollments.length_operator && !p;
case meta_function::pairs:
return enrollments.pairs_operator && !p;
case meta_function::call:
return enrollments.call_operator && !p;
case meta_function::less_than:
return enrollments.less_than_operator && !p;
case meta_function::less_than_or_equal_to:
return enrollments.less_than_or_equal_to_operator && !p;
case meta_function::equal_to:
return enrollments.equal_to_operator && !p;
default:
break;
}
return !p;
}
};
struct indexed_insert {
lua_reg_table& l;
int& index;
indexed_insert(lua_reg_table& cont, int& idx) : l(cont), index(idx) {
}
void operator()(meta_function mf, lua_CFunction f) {
l[index] = luaL_Reg { to_string(mf).c_str(), f };
++index;
}
};
} // namespace detail
namespace stack {
template <typename T, bool global = false, bool raw = false, typename = void>
struct field_getter;
template <typename T, typename P, bool global = false, bool raw = false, typename = void>
struct probe_field_getter;
template <typename T, bool global = false, bool raw = false, typename = void>
struct field_setter;
template <typename T, typename = void>
struct unqualified_getter;
template <typename T, typename = void>
struct qualified_getter;
template <typename T, typename = void>
struct qualified_interop_getter;
template <typename T, typename = void>
struct unqualified_interop_getter;
template <typename T, typename = void>
struct popper;
template <typename T, typename = void>
struct unqualified_pusher;
template <typename T, type t, typename = void>
struct unqualified_checker;
template <typename T, type t, typename = void>
struct qualified_checker;
template <typename T, typename = void>
struct unqualified_check_getter;
template <typename T, typename = void>
struct qualified_check_getter;
struct probe {
bool success;
int levels;
probe(bool s, int l) : success(s), levels(l) {
}
operator bool() const {
return success;
};
};
struct record {
int last;
int used;
record() noexcept : last(), used() {
}
void use(int count) noexcept {
last = count;
used += count;
}
};
namespace stack_detail {
template <typename Function>
Function* get_function_pointer(lua_State*, int, record&) noexcept;
template <typename Function, typename Handler>
bool check_function_pointer(lua_State* L, int index, Handler&& handler, record& tracking) noexcept;
} // namespace stack_detail
} // namespace stack
namespace meta { namespace meta_detail {
template <typename T>
using adl_sol_lua_get_test_t = decltype(sol_lua_get(types<T>(), static_cast<lua_State*>(nullptr), -1, std::declval<stack::record&>()));
template <typename T>
using adl_sol_lua_interop_get_test_t
= decltype(sol_lua_interop_get(types<T>(), static_cast<lua_State*>(nullptr), -1, static_cast<void*>(nullptr), std::declval<stack::record&>()));
template <typename T>
using adl_sol_lua_check_test_t = decltype(sol_lua_check(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>()));
template <typename T>
using adl_sol_lua_interop_check_test_t
= decltype(sol_lua_interop_check(types<T>(), static_cast<lua_State*>(nullptr), -1, type::none, no_panic, std::declval<stack::record&>()));
template <typename T>
using adl_sol_lua_check_get_test_t
= decltype(sol_lua_check_get(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>()));
template <typename... Args>
using adl_sol_lua_push_test_t = decltype(sol_lua_push(static_cast<lua_State*>(nullptr), std::declval<Args>()...));
template <typename T, typename... Args>
using adl_sol_lua_push_exact_test_t = decltype(sol_lua_push(types<T>(), static_cast<lua_State*>(nullptr), std::declval<Args>()...));
template <typename T>
inline constexpr bool is_adl_sol_lua_get_v = meta::is_detected_v<adl_sol_lua_get_test_t, T>;
template <typename T>
inline constexpr bool is_adl_sol_lua_interop_get_v = meta::is_detected_v<adl_sol_lua_interop_get_test_t, T>;
template <typename T>
inline constexpr bool is_adl_sol_lua_check_v = meta::is_detected_v<adl_sol_lua_check_test_t, T>;
template <typename T>
inline constexpr bool is_adl_sol_lua_interop_check_v = meta::is_detected_v<adl_sol_lua_interop_check_test_t, T>;
template <typename T>
inline constexpr bool is_adl_sol_lua_check_get_v = meta::is_detected_v<adl_sol_lua_check_get_test_t, T>;
template <typename... Args>
inline constexpr bool is_adl_sol_lua_push_v = meta::is_detected_v<adl_sol_lua_push_test_t, Args...>;
template <typename T, typename... Args>
inline constexpr bool is_adl_sol_lua_push_exact_v = meta::is_detected_v<adl_sol_lua_push_exact_test_t, T, Args...>;
}} // namespace meta::meta_detail
namespace stack {
namespace stack_detail {
constexpr const char* not_enough_stack_space = "not enough space left on Lua stack";
constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number";
constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number";
constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string";
constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function";
constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol3 userdata";
constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees";
constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment";
template <typename T>
struct strip {
typedef T type;
};
template <typename T>
struct strip<std::reference_wrapper<T>> {
typedef T& type;
};
template <typename T>
struct strip<user<T>> {
typedef T& type;
};
template <typename T>
struct strip<non_null<T>> {
typedef T type;
};
template <typename T>
using strip_t = typename strip<T>::type;
template <typename C>
static int get_size_hint(C& c) {
return static_cast<int>(c.size());
}
template <typename V, typename Al>
static int get_size_hint(const std::forward_list<V, Al>&) {
// forward_list makes me sad
return static_cast<int>(32);
}
template <typename T>
decltype(auto) unchecked_unqualified_get(lua_State* L, int index, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<Tu>) {
return sol_lua_get(types<Tu>(), L, index, tracking);
}
else {
unqualified_getter<Tu> g {};
(void)g;
return g.get(L, index, tracking);
}
}
template <typename T>
decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) {
if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<T>) {
return sol_lua_get(types<T>(), L, index, tracking);
}
else {
qualified_getter<T> g {};
(void)g;
return g.get(L, index, tracking);
}
}
template <typename T>
decltype(auto) unqualified_interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<Tu>) {
return sol_lua_interop_get(types<Tu>(), L, index, unadjusted_pointer, tracking);
}
else {
(void)L;
(void)index;
(void)unadjusted_pointer;
(void)tracking;
using Ti = stack_detail::strip_t<Tu>;
return std::pair<bool, Ti*> { false, nullptr };
}
}
template <typename T>
decltype(auto) interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<T>) {
return sol_lua_interop_get(types<T>(), L, index, unadjusted_pointer, tracking);
}
else {
return unqualified_interop_get<T>(L, index, unadjusted_pointer, tracking);
}
}
template <typename T, typename Handler>
bool unqualified_interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<Tu>) {
return sol_lua_interop_check(types<Tu>(), L, index, index_type, std::forward<Handler>(handler), tracking);
}
else {
(void)L;
(void)index;
(void)index_type;
(void)handler;
(void)tracking;
return false;
}
}
template <typename T, typename Handler>
bool interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<T>) {
return sol_lua_interop_check(types<T>(), L, index, index_type, std::forward<Handler>(handler), tracking);
}
else {
return unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking);
}
}
using undefined_method_func = void (*)(stack_reference);
struct undefined_metatable {
lua_State* L;
const char* key;
undefined_method_func on_new_table;
undefined_metatable(lua_State* l, const char* k, undefined_method_func umf) : L(l), key(k), on_new_table(umf) {
}
void operator()() const {
if (luaL_newmetatable(L, key) == 1) {
on_new_table(stack_reference(L, -1));
}
lua_setmetatable(L, -2);
}
};
} // namespace stack_detail
inline bool maybe_indexable(lua_State* L, int index = -1) {
type t = type_of(L, index);
return t == type::userdata || t == type::table;
}
inline int top(lua_State* L) {
return lua_gettop(L);
}
inline bool is_main_thread(lua_State* L) {
int ismainthread = lua_pushthread(L);
lua_pop(L, 1);
return ismainthread == 1;
}
inline void coroutine_create_guard(lua_State* L) {
if (is_main_thread(L)) {
return;
}
int stacksize = lua_gettop(L);
if (stacksize < 1) {
return;
}
if (type_of(L, 1) != type::function) {
return;
}
// well now we're screwed...
// we can clean the stack and pray it doesn't destroy anything?
lua_pop(L, stacksize);
}
inline void clear(lua_State* L, int table_index) {
lua_pushnil(L);
while (lua_next(L, table_index) != 0) {
// remove value
lua_pop(L, 1);
// duplicate key to protect form rawset
lua_pushvalue(L, -1);
// push new value
lua_pushnil(L);
// table_index%[key] = nil
lua_rawset(L, table_index);
}
}
inline void clear(reference& r) {
auto pp = push_pop<false>(r);
int stack_index = pp.index_of(r);
clear(r.lua_state(), stack_index);
}
inline void clear(stack_reference& r) {
clear(r.lua_state(), r.stack_index());
}
template <typename T, typename... Args>
int push(lua_State* L, T&& t, Args&&... args) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, T, Args...>) {
return sol_lua_push(types<T>(), L, std::forward<T>(t), std::forward<Args>(args)...);
}
else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, T, Args...>) {
return sol_lua_push(types<Tu>(), L, std::forward<T>(t), std::forward<Args>(args)...);
}
else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<T, Args...>) {
return sol_lua_push(L, std::forward<T>(t), std::forward<Args>(args)...);
}
else {
unqualified_pusher<Tu> p {};
(void)p;
return p.push(L, std::forward<T>(t), std::forward<Args>(args)...);
}
}
// overload allows to use a pusher of a specific type, but pass in any kind of args
template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
int push(lua_State* L, Arg&& arg, Args&&... args) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, Arg, Args...>) {
return sol_lua_push(types<T>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, Arg, Args...>) {
return sol_lua_push(types<Tu>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<Arg, Args...>) {
return sol_lua_push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
else {
unqualified_pusher<Tu> p {};
(void)p;
return p.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
}
template <typename T, typename... Args>
int push_userdata(lua_State* L, T&& t, Args&&... args) {
using U = meta::unqualified_t<T>;
using Tr = meta::conditional_t<std::is_pointer_v<U>,
detail::as_pointer_tag<std::remove_pointer_t<U>>,
meta::conditional_t<is_unique_usertype_v<U>, detail::as_unique_tag<U>, detail::as_value_tag<U>>>;
return stack::push<Tr>(L, std::forward<T>(t), std::forward<Args>(args)...);
}
template <typename T, typename Arg, typename... Args>
int push_userdata(lua_State* L, Arg&& arg, Args&&... args) {
using U = meta::unqualified_t<T>;
using Tr = meta::conditional_t<std::is_pointer_v<U>,
detail::as_pointer_tag<std::remove_pointer_t<U>>,
meta::conditional_t<is_unique_usertype_v<U>, detail::as_unique_tag<U>, detail::as_value_tag<U>>>;
return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
namespace stack_detail {
template <typename T, typename Arg, typename... Args>
int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
using use_reference_tag = meta::all<std::is_lvalue_reference<T>,
meta::neg<std::is_const<std::remove_reference_t<T>>>,
meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
meta::neg<is_unique_usertype<meta::unqualified_t<T>>>>;
using Tr = meta::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>;
return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
} // namespace stack_detail
template <typename T, typename... Args>
int push_reference(lua_State* L, T&& t, Args&&... args) {
return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...);
}
template <typename T, typename Arg, typename... Args>
int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
inline int multi_push(lua_State*) {
// do nothing
return 0;
}
template <typename T, typename... Args>
int multi_push(lua_State* L, T&& t, Args&&... args) {
int pushcount = push(L, std::forward<T>(t));
void(detail::swallow { (pushcount += stack::push(L, std::forward<Args>(args)), 0)... });
return pushcount;
}
inline int multi_push_reference(lua_State*) {
// do nothing
return 0;
}
template <typename T, typename... Args>
int multi_push_reference(lua_State* L, T&& t, Args&&... args) {
int pushcount = push_reference(L, std::forward<T>(t));
void(detail::swallow { (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... });
return pushcount;
}
template <typename T, typename Handler>
bool unqualified_check(lua_State* L, int index, Handler&& handler, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<Tu>) {
return sol_lua_check(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
}
else {
unqualified_checker<Tu, lua_type_of_v<Tu>> c;
// VC++ has a bad warning here: shut it up
(void)c;
return c.check(L, index, std::forward<Handler>(handler), tracking);
}
}
template <typename T, typename Handler>
bool unqualified_check(lua_State* L, int index, Handler&& handler) {
record tracking {};
return unqualified_check<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool unqualified_check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return unqualified_check<T>(L, index, handler);
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<T>) {
return sol_lua_check(types<T>(), L, index, std::forward<Handler>(handler), tracking);
}
else {
using Tu = meta::unqualified_t<T>;
qualified_checker<T, lua_type_of_v<Tu>> c;
// VC++ has a bad warning here: shut it up
(void)c;
return c.check(L, index, std::forward<Handler>(handler), tracking);
}
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler) {
record tracking {};
return check<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check<T>(L, index, handler);
}
template <typename T, typename Handler>
bool check_usertype(lua_State* L, int index, type, Handler&& handler, record& tracking) {
using Tu = meta::unqualified_t<T>;
using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) {
using Tu = meta::unqualified_t<T>;
using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check_usertype(lua_State* L, int index, Handler&& handler) {
record tracking {};
return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check_usertype<T>(L, index, handler);
}
template <typename T, typename Handler>
decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
}
else if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<Tu>) {
return sol_lua_check_get(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
}
else {
unqualified_check_getter<Tu> cg {};
(void)cg;
return cg.get(L, index, std::forward<Handler>(handler), tracking);
}
}
template <typename T, typename Handler>
decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler) {
record tracking {};
return unqualified_check_get<T>(L, index, handler, tracking);
}
template <typename T>
decltype(auto) unqualified_check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return unqualified_check_get<T>(L, index, handler);
}
template <typename T, typename Handler>
decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
}
else {
qualified_check_getter<T> cg {};
(void)cg;
return cg.get(L, index, std::forward<Handler>(handler), tracking);
}
}
template <typename T, typename Handler>
decltype(auto) check_get(lua_State* L, int index, Handler&& handler) {
record tracking {};
return check_get<T>(L, index, handler, tracking);
}
template <typename T>
decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check_get<T>(L, index, handler);
}
namespace stack_detail {
template <typename Handler>
bool check_types(lua_State*, int, Handler&&, record&) {
return true;
}
template <typename T, typename... Args, typename Handler>
bool check_types(lua_State* L, int firstargument, Handler&& handler, record& tracking) {
if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
return false;
return check_types<Args...>(L, firstargument, std::forward<Handler>(handler), tracking);
}
template <typename... Args, typename Handler>
bool check_types(types<Args...>, lua_State* L, int index, Handler&& handler, record& tracking) {
return check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
}
} // namespace stack_detail
template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack_detail::check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler) {
record tracking {};
return multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename... Args>
bool multi_check(lua_State* L, int index) {
return multi_check<Args...>(L, index);
}
template <typename T>
auto unqualified_get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_unqualified_get<T>(L, index, tracking)) {
#if SOL_IS_ON(SOL_SAFE_GETTER_I_)
static constexpr bool is_op = meta::is_optional_v<T>;
if constexpr (is_op) {
return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
}
else {
if (is_lua_reference<T>::value) {
return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
}
auto op = unqualified_check_get<T>(L, index, type_panic_c_str, tracking);
return *std::move(op);
}
#else
return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
#endif
}
template <typename T>
decltype(auto) unqualified_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking {};
return unqualified_get<T>(L, index, tracking);
}
template <typename T>
auto get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) {
#if SOL_IS_ON(SOL_SAFE_GETTER_I_)
static constexpr bool is_op = meta::is_optional_v<T>;
if constexpr (is_op) {
return stack_detail::unchecked_get<T>(L, index, tracking);
}
else {
if (is_lua_reference<T>::value) {
return stack_detail::unchecked_get<T>(L, index, tracking);
}
auto op = check_get<T>(L, index, type_panic_c_str, tracking);
return *std::move(op);
}
#else
return stack_detail::unchecked_get<T>(L, index, tracking);
#endif
}
template <typename T>
decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking {};
return get<T>(L, index, tracking);
}
template <typename T>
decltype(auto) get_usertype(lua_State* L, int index, record& tracking) {
using UT = meta::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>;
return get<UT>(L, index, tracking);
}
template <typename T>
decltype(auto) get_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking {};
return get_usertype<T>(L, index, tracking);
}
template <typename T>
decltype(auto) pop(lua_State* L) {
return popper<meta::unqualified_t<T>> {}.pop(L);
}
template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key) {
field_getter<meta::unqualified_t<Key>, global, raw> {}.get(L, std::forward<Key>(key));
}
template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key, int tableindex) {
field_getter<meta::unqualified_t<Key>, global, raw> {}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key) {
get_field<global, true>(L, std::forward<Key>(key));
}
template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key, int tableindex) {
get_field<global, true>(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_get_field(lua_State* L, Key&& key) {
return probe_field_getter<meta::unqualified_t<Key>, C, global, raw> {}.get(L, std::forward<Key>(key));
}
template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_get_field(lua_State* L, Key&& key, int tableindex) {
return probe_field_getter<meta::unqualified_t<Key>, C, global, raw> {}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key) {
return probe_get_field<global, true, C>(L, std::forward<Key>(key));
}
template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) {
return probe_get_field<global, true, C>(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value) {
field_setter<meta::unqualified_t<Key>, global, raw> {}.set(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
field_setter<meta::unqualified_t<Key>, global, raw> {}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value) {
set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
template <typename T, typename F>
void modify_unique_usertype_as(const stack_reference& obj, F&& f) {
using u_traits = unique_usertype_traits<T>;
void* raw = lua_touserdata(obj.lua_state(), obj.stack_index());
void* ptr_memory = detail::align_usertype_pointer(raw);
void* uu_memory = detail::align_usertype_unique<T>(raw);
T& uu = *static_cast<T*>(uu_memory);
f(uu);
*static_cast<void**>(ptr_memory) = static_cast<void*>(u_traits::get(uu));
}
template <typename F>
void modify_unique_usertype(const stack_reference& obj, F&& f) {
using bt = meta::bind_traits<meta::unqualified_t<F>>;
using T = typename bt::template arg_at<0>;
using Tu = meta::unqualified_t<T>;
modify_unique_usertype_as<Tu>(obj, std::forward<F>(f));
}
} // namespace stack
namespace detail {
template <typename T>
lua_CFunction make_destructor(std::true_type) {
if constexpr (is_unique_usertype_v<T>) {
return &unique_destruct<T>;
}
else if constexpr (!std::is_pointer_v<T>) {
return &usertype_alloc_destruct<T>;
}
else {
return &cannot_destruct<T>;
}
}
template <typename T>
lua_CFunction make_destructor(std::false_type) {
return &cannot_destruct<T>;
}
template <typename T>
lua_CFunction make_destructor() {
return make_destructor<T>(std::is_destructible<T>());
}
struct no_comp {
template <typename A, typename B>
bool operator()(A&&, B&&) const {
return false;
}
};
template <typename T>
int is_check(lua_State* L) {
return stack::push(L, stack::check<T>(L, 1, &no_panic));
}
template <typename T>
int member_default_to_string(std::true_type, lua_State* L) {
decltype(auto) ts = stack::get<T>(L, 1).to_string();
return stack::push(L, std::forward<decltype(ts)>(ts));
}
template <typename T>
int member_default_to_string(std::false_type, lua_State* L) {
return luaL_error(L,
"cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member "
"function, or operator<<(ostream&, ...) present",
detail::demangle<T>().data());
}
template <typename T>
int adl_default_to_string(std::true_type, lua_State* L) {
using namespace std;
decltype(auto) ts = to_string(stack::get<T>(L, 1));
return stack::push(L, std::forward<decltype(ts)>(ts));
}
template <typename T>
int adl_default_to_string(std::false_type, lua_State* L) {
return member_default_to_string<T>(meta::supports_to_string_member<T>(), L);
}
template <typename T>
int oss_default_to_string(std::true_type, lua_State* L) {
std::ostringstream oss;
oss << stack::unqualified_get<T>(L, 1);
return stack::push(L, oss.str());
}
template <typename T>
int oss_default_to_string(std::false_type, lua_State* L) {
return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L);
}
template <typename T>
int default_to_string(lua_State* L) {
return oss_default_to_string<T>(meta::supports_op_left_shift<std::ostream, T>(), L);
}
template <typename T>
int default_size(lua_State* L) {
decltype(auto) self = stack::unqualified_get<T>(L, 1);
return stack::push(L, self.size());
}
template <typename T, typename Op>
int comparsion_operator_wrap(lua_State* L) {
if constexpr (std::is_void_v<T>) {
return stack::push(L, false);
}
else {
auto maybel = stack::unqualified_check_get<T>(L, 1);
if (!maybel) {
return stack::push(L, false);
}
auto mayber = stack::unqualified_check_get<T>(L, 2);
if (!mayber) {
return stack::push(L, false);
}
decltype(auto) l = *maybel;
decltype(auto) r = *mayber;
if constexpr (std::is_same_v<no_comp, Op>) {
std::equal_to<> op;
return stack::push(L, op(detail::ptr(l), detail::ptr(r)));
}
else {
if constexpr (std::is_same_v<std::equal_to<>, Op> // clang-format hack
|| std::is_same_v<std::less_equal<>, Op> //
|| std::is_same_v<std::less_equal<>, Op>) { //
if (detail::ptr(l) == detail::ptr(r)) {
return stack::push(L, true);
}
}
Op op;
return stack::push(L, op(detail::deref(l), detail::deref(r)));
}
}
}
template <typename T, typename IFx, typename Fx>
void insert_default_registrations(IFx&& ifx, Fx&& fx);
template <typename T, bool, bool>
struct get_is_primitive : is_lua_primitive<T> { };
template <typename T>
struct get_is_primitive<T, true, false>
: meta::neg<std::is_reference<decltype(sol_lua_get(types<T>(), nullptr, -1, std::declval<stack::record&>()))>> { };
template <typename T>
struct get_is_primitive<T, false, true>
: meta::neg<std::is_reference<decltype(sol_lua_get(types<meta::unqualified_t<T>>(), nullptr, -1, std::declval<stack::record&>()))>> { };
template <typename T>
struct get_is_primitive<T, true, true> : get_is_primitive<T, true, false> { };
} // namespace detail
template <typename T>
struct is_proxy_primitive
: detail::get_is_primitive<T, meta::meta_detail::is_adl_sol_lua_get_v<T>, meta::meta_detail::is_adl_sol_lua_get_v<meta::unqualified_t<T>>> { };
} // namespace sol
// end of sol/stack_core.hpp
// beginning of sol/stack_check.hpp
// beginning of sol/stack_check_unqualified.hpp
#include <memory>
#include <functional>
#include <utility>
#include <cmath>
#include <optional>
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
#include <variant>
#endif // variant shenanigans
namespace sol { namespace stack {
namespace stack_detail {
inline bool impl_check_metatable(lua_State* L, int index, const std::string& metakey, bool poptable) {
luaL_getmetatable(L, &metakey[0]);
const type expectedmetatabletype = static_cast<type>(lua_type(L, -1));
if (expectedmetatabletype != type::lua_nil) {
if (lua_rawequal(L, -1, index) == 1) {
lua_pop(L, 1 + static_cast<int>(poptable));
return true;
}
}
lua_pop(L, 1);
return false;
}
template <typename T, bool poptable = true>
inline bool check_metatable(lua_State* L, int index = -2) {
return impl_check_metatable(L, index, usertype_traits<T>::metatable(), poptable);
}
template <type expected, int (*check_func)(lua_State*, int)>
struct basic_check {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
bool success = check_func(L, index) == 1;
if (!success) {
// expected type, actual type
handler(L, index, expected, type_of(L, index), "");
}
return success;
}
};
} // namespace stack_detail
template <typename T, typename>
struct unqualified_interop_checker {
template <typename Handler>
static bool check(lua_State*, int, type, Handler&&, record&) {
return false;
}
};
template <typename T, typename>
struct qualified_interop_checker {
template <typename Handler>
static bool check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
return stack_detail::unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking);
}
};
template <typename T, type expected, typename>
struct unqualified_checker {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
if constexpr (std::is_same_v<T, bool>) {
tracking.use(1);
bool success = lua_isboolean(L, index) == 1;
if (!success) {
// expected type, actual type
handler(L, index, expected, type_of(L, index), "");
}
return success;
}
else if constexpr (meta::any_same_v<T, char /* , char8_t*/, char16_t, char32_t>) {
return stack::check<std::basic_string<T>>(L, index, std::forward<Handler>(handler), tracking);
}
else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) {
tracking.use(1);
#if SOL_LUA_VESION_I_ >= 503
// Lua 5.3 and greater checks for numeric precision
#if SOL_IS_ON(SOL_STRINGS_ARE_NUMBERS_I_)
// imprecise, sloppy conversions
int isnum = 0;
lua_tointegerx(L, index, &isnum);
const bool success = isnum != 0;
if (!success) {
// expected type, actual type
handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string_integral);
}
#elif SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_)
// this check is precise, do not convert
if (lua_isinteger(L, index) == 1) {
return true;
}
const bool success = false;
if (!success) {
// expected type, actual type
handler(L, index, type::number, type_of(L, index), detail::not_a_number_integral);
}
#else
// Numerics are neither safe nor string-convertible
type t = type_of(L, index);
const bool success = t == type::number;
#endif
if (!success) {
// expected type, actual type
handler(L, index, type::number, type_of(L, index), detail::not_a_number);
}
return success;
#else
// Lua 5.2 and below checks
#if SOL_IS_OFF(SOL_STRINGS_ARE_NUMBERS_I_)
// must pre-check, because it will convert
type t = type_of(L, index);
if (t != type::number) {
// expected type, actual type
handler(L, index, type::number, t, detail::not_a_number);
return false;
}
#endif // Do not allow strings to be numbers
#if SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_)
int isnum = 0;
const lua_Number v = lua_tonumberx(L, index, &isnum);
const bool success = isnum != 0 && static_cast<lua_Number>(llround(v)) == v;
#else
const bool success = true;
#endif // Safe numerics and number precision checking
if (!success) {
// Use defines to provide a better error message!
#if SOL_IS_ON(SOL_STRINGS_ARE_NUMBERS_I_)
handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string);
#elif SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_)
handler(L, index, type::number, t, detail::not_a_number_or_number_string);
#else
handler(L, index, type::number, t, detail::not_a_number);
#endif
}
return success;
#endif
}
else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) {
tracking.use(1);
#if SOL_IS_ON(SOL_STRINGS_ARE_NUMBERS_I_)
bool success = lua_isnumber(L, index) == 1;
if (!success) {
// expected type, actual type
handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string);
}
return success;
#else
type t = type_of(L, index);
bool success = t == type::number;
if (!success) {
// expected type, actual type
handler(L, index, type::number, t, detail::not_a_number);
}
return success;
#endif // Strings are Numbers
}
else if constexpr (meta::any_same_v<T, type, this_state, this_main_state, this_environment, variadic_args>) {
(void)L;
(void)index;
(void)handler;
tracking.use(0);
return true;
}
else if constexpr (is_unique_usertype_v<T>) {
using proper_T = typename unique_usertype_traits<T>::type;
const type indextype = type_of(L, index);
tracking.use(1);
if (indextype != type::userdata) {
handler(L, index, type::userdata, indextype, "value is not a userdata");
return false;
}
if (lua_getmetatable(L, index) == 0) {
return true;
}
int metatableindex = lua_gettop(L);
if (stack_detail::check_metatable<detail::unique_usertype<proper_T>>(L, metatableindex)) {
void* memory = lua_touserdata(L, index);
memory = detail::align_usertype_unique_destructor(memory);
detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
bool success = &detail::usertype_unique_alloc_destroy<proper_T, T> == pdx;
if (!success) {
memory = detail::align_usertype_unique_tag<true>(memory);
#if 0
// New version
#else
const char*& name_tag = *static_cast<const char**>(memory);
success = usertype_traits<T>::qualified_name() == name_tag;
#endif
if (!success) {
handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype");
}
}
return success;
}
lua_pop(L, 1);
handler(L, index, type::userdata, indextype, "unrecognized userdata (not pushed by sol?)");
return false;
}
else if constexpr (meta::any_same_v<T, lua_nil_t, std::nullopt_t, nullopt_t>) {
bool success = lua_isnil(L, index);
if (success) {
tracking.use(1);
return success;
}
tracking.use(0);
success = lua_isnone(L, index);
if (!success) {
// expected type, actual type
handler(L, index, expected, type_of(L, index), "");
}
return success;
}
else if constexpr (std::is_same_v<T, env_key_t>) {
tracking.use(1);
type t = type_of(L, index);
if (t == type::table || t == type::none || t == type::lua_nil || t == type::userdata) {
return true;
}
handler(L, index, type::table, t, "value cannot not have a valid environment");
return true;
}
else if constexpr (std::is_same_v<T, detail::non_lua_nil_t>) {
return !stack::unqualified_check<lua_nil_t>(L, index, std::forward<Handler>(handler), tracking);
}
else if constexpr (meta::is_specialization_of_v<T, basic_lua_table>) {
tracking.use(1);
type t = type_of(L, index);
if (t != type::table) {
handler(L, index, type::table, t, "value is not a table");
return false;
}
return true;
}
else if constexpr (meta::is_specialization_of_v<T, basic_bytecode>) {
tracking.use(1);
type t = type_of(L, index);
if (t != type::function) {
handler(L, index, type::function, t, "value is not a function that can be dumped");
return false;
}
return true;
}
else if constexpr (meta::is_specialization_of_v<T, basic_environment>) {
tracking.use(1);
if (lua_getmetatable(L, index) == 0) {
return true;
}
type t = type_of(L, -1);
if (t == type::table || t == type::none || t == type::lua_nil) {
lua_pop(L, 1);
return true;
}
if (t != type::userdata) {
lua_pop(L, 1);
handler(L, index, type::table, t, "value does not have a valid metatable");
return false;
}
return true;
}
else if constexpr (std::is_same_v<T, metatable_key_t>) {
tracking.use(1);
if (lua_getmetatable(L, index) == 0) {
return true;
}
type t = type_of(L, -1);
if (t == type::table || t == type::none || t == type::lua_nil) {
lua_pop(L, 1);
return true;
}
if (t != type::userdata) {
lua_pop(L, 1);
handler(L, index, expected, t, "value does not have a valid metatable");
return false;
}
return true;
}
else if constexpr (std::is_same_v<T, luaL_Stream*> || std::is_same_v<T, luaL_Stream>) {
if (lua_getmetatable(L, index) == 0) {
type t = type_of(L, index);
handler(L, index, expected, t, "value is not a valid luaL_Stream (has no metatable/is not a valid value)");
return false;
}
luaL_getmetatable(L, LUA_FILEHANDLE);
if (type_of(L, index) != type::table) {
type t = type_of(L, index);
lua_pop(L, 1);
handler(L,
index,
expected,
t,
"value is not a valid luaL_Stream (there is no metatable for luaL_Stream -- did you forget to "
"my_lua_state.open_libraries(sol::lib::state) or equivalent?)");
return false;
}
int is_stream_table = lua_compare(L, -1, -2, LUA_OPEQ);
lua_pop(L, 2);
if (is_stream_table == 0) {
type t = type_of(L, index);
handler(L, index, expected, t, "value is not a valid luaL_Stream (incorrect metatable)");
return false;
}
return true;
}
else if constexpr (meta::is_optional_v<T>) {
using ValueType = typename T::value_type;
(void)handler;
type t = type_of(L, index);
if (t == type::none) {
tracking.use(0);
return true;
}
if (t == type::lua_nil) {
tracking.use(1);
return true;
}
return stack::unqualified_check<ValueType>(L, index, no_panic, tracking);
}
#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
else if constexpr (std::is_function_v<T> || (std::is_pointer_v<T> && std::is_function_v<std::remove_pointer_t<T>>)) {
return stack_detail::check_function_pointer<std::remove_pointer_t<T>>(L, index, std::forward<Handler>(handler), tracking);
}
#endif
else if constexpr (expected == type::userdata) {
if constexpr (meta::any_same_v<T, userdata_value> || meta::is_specialization_of_v<T, basic_userdata>) {
tracking.use(1);
type t = type_of(L, index);
bool success = t == type::userdata;
if (!success) {
// expected type, actual type
handler(L, index, type::userdata, t, "");
}
return success;
}
else if constexpr (meta::is_specialization_of_v<T, user>) {
unqualified_checker<lightuserdata_value, type::userdata> c;
(void)c;
return c.check(L, index, std::forward<Handler>(handler), tracking);
}
else {
if constexpr (std::is_pointer_v<T>) {
return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
}
else if constexpr (meta::is_specialization_of_v<T, std::reference_wrapper>) {
using T_internal = typename T::type;
return stack::check<T_internal>(L, index, std::forward<Handler>(handler), tracking);
}
else {
return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
}
}
}
else if constexpr (expected == type::poly) {
tracking.use(1);
bool success = is_lua_reference_v<T> || !lua_isnone(L, index);
if (!success) {
// expected type, actual type
handler(L, index, type::poly, type_of(L, index), "");
}
return success;
}
else if constexpr (expected == type::lightuserdata) {
tracking.use(1);
type t = type_of(L, index);
bool success = t == type::userdata || t == type::lightuserdata;
if (!success) {
// expected type, actual type
handler(L, index, type::lightuserdata, t, "");
}
return success;
}
else if constexpr (expected == type::function) {
if constexpr (meta::any_same_v<T, lua_CFunction, std::remove_pointer_t<lua_CFunction>, c_closure>) {
tracking.use(1);
bool success = lua_iscfunction(L, index) == 1;
if (!success) {
// expected type, actual type
handler(L, index, expected, type_of(L, index), "");
}
return success;
}
else {
tracking.use(1);
type t = type_of(L, index);
if (t == type::lua_nil || t == type::none || t == type::function) {
// allow for lua_nil to be returned
return true;
}
if (t != type::userdata && t != type::table) {
handler(L, index, type::function, t, "must be a function or table or a userdata");
return false;
}
// Do advanced check for call-style userdata?
static const auto& callkey = to_string(meta_function::call);
if (lua_getmetatable(L, index) == 0) {
// No metatable, no __call key possible
handler(L, index, type::function, t, "value is not a function and does not have overriden metatable");
return false;
}
if (lua_isnoneornil(L, -1)) {
lua_pop(L, 1);
handler(L, index, type::function, t, "value is not a function and does not have valid metatable");
return false;
}
lua_getfield(L, -1, &callkey[0]);
if (lua_isnoneornil(L, -1)) {
lua_pop(L, 2);
handler(L, index, type::function, t, "value's metatable does not have __call overridden in metatable, cannot call this type");
return false;
}
// has call, is definitely a function
lua_pop(L, 2);
return true;
}
}
else if constexpr (expected == type::table) {
tracking.use(1);
type t = type_of(L, index);
if (t == type::table) {
return true;
}
if (t != type::userdata) {
handler(L, index, type::table, t, "value is not a table or a userdata that can behave like one");
return false;
}
return true;
}
else {
tracking.use(1);
const type indextype = type_of(L, index);
bool success = expected == indextype;
if (!success) {
// expected type, actual type, message
handler(L, index, expected, indextype, "");
}
return success;
}
}
};
template <typename T>
struct unqualified_checker<non_null<T>, type::userdata> : unqualified_checker<T, lua_type_of_v<T>> { };
template <typename T>
struct unqualified_checker<detail::as_value_tag<T>, type::userdata> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
const type indextype = type_of(L, index);
return check(types<T>(), L, index, indextype, std::forward<Handler>(handler), tracking);
}
template <typename U, typename Handler>
static bool check(types<U>, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) {
if constexpr (
std::is_same_v<T,
lightuserdata_value> || std::is_same_v<T, userdata_value> || std::is_same_v<T, userdata> || std::is_same_v<T, lightuserdata>) {
tracking.use(1);
if (indextype != type::userdata) {
handler(L, index, type::userdata, indextype, "value is not a valid userdata");
return false;
}
return true;
}
else {
#if SOL_IS_ON(SOL_USE_INTEROP_I_)
if (stack_detail::interop_check<U>(L, index, indextype, handler, tracking)) {
return true;
}
#endif // interop extensibility
tracking.use(1);
if (indextype != type::userdata) {
handler(L, index, type::userdata, indextype, "value is not a valid userdata");
return false;
}
if (lua_getmetatable(L, index) == 0) {
return true;
}
int metatableindex = lua_gettop(L);
if (stack_detail::check_metatable<U>(L, metatableindex))
return true;
if (stack_detail::check_metatable<U*>(L, metatableindex))
return true;
if (stack_detail::check_metatable<detail::unique_usertype<U>>(L, metatableindex))
return true;
if (stack_detail::check_metatable<as_container_t<U>>(L, metatableindex))
return true;
bool success = false;
bool has_derived = derive<T>::value || weak_derive<T>::value;
if (has_derived) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
#endif // make sure stack doesn't overflow
auto pn = stack::pop_n(L, 1);
lua_pushstring(L, &detail::base_class_check_key()[0]);
lua_rawget(L, metatableindex);
if (type_of(L, -1) != type::lua_nil) {
void* basecastdata = lua_touserdata(L, -1);
detail::inheritance_check_function ic = reinterpret_cast<detail::inheritance_check_function>(basecastdata);
success = ic(usertype_traits<T>::qualified_name());
}
}
lua_pop(L, 1);
if (!success) {
handler(L, index, type::userdata, indextype, "value at this index does not properly reflect the desired type");
return false;
}
return true;
}
}
};
template <typename T>
struct unqualified_checker<detail::as_pointer_tag<T>, type::userdata> {
template <typename Handler>
static bool check(lua_State* L, int index, type indextype, Handler&& handler, record& tracking) {
if (indextype == type::lua_nil) {
tracking.use(1);
return true;
}
return check_usertype<std::remove_pointer_t<T>>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
const type indextype = type_of(L, index);
return check(L, index, indextype, std::forward<Handler>(handler), tracking);
}
};
template <typename... Args>
struct unqualified_checker<std::tuple<Args...>, type::poly> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack::multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
}
};
template <typename A, typename B>
struct unqualified_checker<std::pair<A, B>, type::poly> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack::multi_check<A, B>(L, index, std::forward<Handler>(handler), tracking);
}
};
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
template <typename... Tn>
struct unqualified_checker<std::variant<Tn...>, type::poly> {
typedef std::variant<Tn...> V;
typedef std::variant_size<V> V_size;
typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;
template <typename Handler>
static bool is_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) {
if constexpr (V_is_empty::value) {
if (lua_isnone(L, index)) {
return true;
}
}
tracking.use(1);
handler(L, index, type::poly, type_of(L, index), "value does not fit any type present in the variant");
return false;
}
template <std::size_t I, typename Handler>
static bool is_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) {
typedef std::variant_alternative_t<I - 1, V> T;
record temp_tracking = tracking;
if (stack::check<T>(L, index, no_panic, temp_tracking)) {
tracking = temp_tracking;
return true;
}
return is_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking);
}
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return is_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking);
}
};
#endif // variant shenanigans
}} // namespace sol::stack
// end of sol/stack_check_unqualified.hpp
// beginning of sol/stack_check_qualified.hpp
namespace sol {
namespace stack {
template <typename X, type expected, typename>
struct qualified_checker {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
if constexpr (!std::is_reference_v<X> && is_unique_usertype_v<X>) {
using u_traits = unique_usertype_traits<meta::unqualified_t<X>>;
using T = typename u_traits::type;
if constexpr (is_base_rebindable_non_void_v<u_traits>) {
using rebind_t = typename u_traits::template rebind_base<void>;
// we have a unique pointer type that can be
// rebound to a base/derived type
const type indextype = type_of(L, index);
tracking.use(1);
if (indextype != type::userdata) {
handler(L, index, type::userdata, indextype, "value is not a userdata");
return false;
}
void* memory = lua_touserdata(L, index);
memory = detail::align_usertype_unique_destructor(memory);
detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
if (&detail::usertype_unique_alloc_destroy<T, X> == pdx) {
return true;
}
if constexpr (derive<T>::value) {
memory = detail::align_usertype_unique_tag<true, false>(memory);
detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory);
string_view ti = usertype_traits<T>::qualified_name();
string_view rebind_ti = usertype_traits<rebind_t>::qualified_name();
if (ic(nullptr, nullptr, ti, rebind_ti) != 0) {
return true;
}
}
handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype");
return false;
}
else {
return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking);
}
}
else if constexpr (!std::is_reference_v<X> && is_container_v<X>) {
if (type_of(L, index) == type::userdata) {
return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking);
}
else {
return stack::unqualified_check<nested<X>>(L, index, std::forward<Handler>(handler), tracking);
}
}
else if constexpr (!std::is_reference_v<X> && meta::is_specialization_of_v<X, nested>) {
using NestedX = typename meta::unqualified_t<X>::nested_type;
return stack::check<NestedX>(L, index, ::std::forward<Handler>(handler), tracking);
}
else {
return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking);
}
}
};
}
} // namespace sol::stack
// end of sol/stack_check_qualified.hpp
// end of sol/stack_check.hpp
// beginning of sol/stack_get.hpp
// beginning of sol/stack_get_unqualified.hpp
// beginning of sol/overload.hpp
#include <utility>
namespace sol {
template <typename... Functions>
struct overload_set {
std::tuple<Functions...> functions;
template <typename Arg, typename... Args, meta::disable<std::is_same<overload_set, meta::unqualified_t<Arg>>> = meta::enabler>
overload_set(Arg&& arg, Args&&... args)
: functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
overload_set(const overload_set&) = default;
overload_set(overload_set&&) = default;
overload_set& operator=(const overload_set&) = default;
overload_set& operator=(overload_set&&) = default;
};
template <typename... Args>
decltype(auto) overload(Args&&... args) {
return overload_set<std::decay_t<Args>...>(std::forward<Args>(args)...);
}
} // namespace sol
// end of sol/overload.hpp
// beginning of sol/unicode.hpp
#include <array>
#include <cstring>
namespace sol {
// Everything here was lifted pretty much straight out of
// ogonek, because fuck figuring it out=
namespace unicode {
enum class error_code {
ok = 0,
invalid_code_point,
invalid_code_unit,
invalid_leading_surrogate,
invalid_trailing_surrogate,
sequence_too_short,
overlong_sequence,
};
inline const string_view& to_string(error_code ec) {
static const string_view storage[7] = {
"ok",
"invalid code points",
"invalid code unit",
"invalid leading surrogate",
"invalid trailing surrogate",
"sequence too short",
"overlong sequence"
};
return storage[static_cast<std::size_t>(ec)];
}
template <typename It>
struct decoded_result {
error_code error;
char32_t codepoint;
It next;
};
template <typename C>
struct encoded_result {
error_code error;
std::size_t code_units_size;
std::array<C, 4> code_units;
};
struct unicode_detail {
// codepoint related
static constexpr char32_t last_code_point = 0x10FFFF;
static constexpr char32_t first_lead_surrogate = 0xD800;
static constexpr char32_t last_lead_surrogate = 0xDBFF;
static constexpr char32_t first_trail_surrogate = 0xDC00;
static constexpr char32_t last_trail_surrogate = 0xDFFF;
static constexpr char32_t first_surrogate = first_lead_surrogate;
static constexpr char32_t last_surrogate = last_trail_surrogate;
static constexpr bool is_lead_surrogate(char32_t u) {
return u >= first_lead_surrogate && u <= last_lead_surrogate;
}
static constexpr bool is_trail_surrogate(char32_t u) {
return u >= first_trail_surrogate && u <= last_trail_surrogate;
}
static constexpr bool is_surrogate(char32_t u) {
return u >= first_surrogate && u <= last_surrogate;
}
// utf8 related
static constexpr auto last_1byte_value = 0x7Fu;
static constexpr auto last_2byte_value = 0x7FFu;
static constexpr auto last_3byte_value = 0xFFFFu;
static constexpr auto start_2byte_mask = 0x80u;
static constexpr auto start_3byte_mask = 0xE0u;
static constexpr auto start_4byte_mask = 0xF0u;
static constexpr auto continuation_mask = 0xC0u;
static constexpr auto continuation_signature = 0x80u;
static constexpr bool is_invalid(unsigned char b) {
return b == 0xC0 || b == 0xC1 || b > 0xF4;
}
static constexpr bool is_continuation(unsigned char b) {
return (b & unicode_detail::continuation_mask) == unicode_detail::continuation_signature;
}
static constexpr bool is_overlong(char32_t u, std::size_t bytes) {
return u <= unicode_detail::last_1byte_value || (u <= unicode_detail::last_2byte_value && bytes > 2)
|| (u <= unicode_detail::last_3byte_value && bytes > 3);
}
static constexpr int sequence_length(unsigned char b) {
return (b & start_2byte_mask) == 0 ? 1
: (b & start_3byte_mask) != start_3byte_mask ? 2
: (b & start_4byte_mask) != start_4byte_mask ? 3
: 4;
}
static constexpr char32_t decode(unsigned char b0, unsigned char b1) {
return ((b0 & 0x1F) << 6) | (b1 & 0x3F);
}
static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2) {
return ((b0 & 0x0F) << 12) | ((b1 & 0x3F) << 6) | (b2 & 0x3F);
}
static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2, unsigned char b3) {
return ((b0 & 0x07) << 18) | ((b1 & 0x3F) << 12) | ((b2 & 0x3F) << 6) | (b3 & 0x3F);
}
// utf16 related
static constexpr char32_t last_bmp_value = 0xFFFF;
static constexpr char32_t normalizing_value = 0x10000;
static constexpr int lead_surrogate_bitmask = 0xFFC00;
static constexpr int trail_surrogate_bitmask = 0x3FF;
static constexpr int lead_shifted_bits = 10;
static constexpr char32_t replacement = 0xFFFD;
static char32_t combine_surrogates(char16_t lead, char16_t trail) {
auto hi = lead - first_lead_surrogate;
auto lo = trail - first_trail_surrogate;
return normalizing_value + ((hi << lead_shifted_bits) | lo);
}
};
inline encoded_result<char> code_point_to_utf8(char32_t codepoint) {
encoded_result<char> er;
er.error = error_code::ok;
if (codepoint <= unicode_detail::last_1byte_value) {
er.code_units_size = 1;
er.code_units = std::array<char, 4>{ { static_cast<char>(codepoint) } };
}
else if (codepoint <= unicode_detail::last_2byte_value) {
er.code_units_size = 2;
er.code_units = std::array<char, 4>{{
static_cast<char>(0xC0 | ((codepoint & 0x7C0) >> 6)),
static_cast<char>(0x80 | (codepoint & 0x3F)),
}};
}
else if (codepoint <= unicode_detail::last_3byte_value) {
er.code_units_size = 3;
er.code_units = std::array<char, 4>{{
static_cast<char>(0xE0 | ((codepoint & 0xF000) >> 12)),
static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)),
static_cast<char>(0x80 | (codepoint & 0x3F)),
}};
}
else {
er.code_units_size = 4;
er.code_units = std::array<char, 4>{ {
static_cast<char>(0xF0 | ((codepoint & 0x1C0000) >> 18)),
static_cast<char>(0x80 | ((codepoint & 0x3F000) >> 12)),
static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)),
static_cast<char>(0x80 | (codepoint & 0x3F)),
} };
}
return er;
}
inline encoded_result<char16_t> code_point_to_utf16(char32_t codepoint) {
encoded_result<char16_t> er;
if (codepoint <= unicode_detail::last_bmp_value) {
er.code_units_size = 1;
er.code_units = std::array<char16_t, 4>{ { static_cast<char16_t>(codepoint) } };
er.error = error_code::ok;
}
else {
auto normal = codepoint - unicode_detail::normalizing_value;
auto lead = unicode_detail::first_lead_surrogate + ((normal & unicode_detail::lead_surrogate_bitmask) >> unicode_detail::lead_shifted_bits);
auto trail = unicode_detail::first_trail_surrogate + (normal & unicode_detail::trail_surrogate_bitmask);
er.code_units = std::array<char16_t, 4>{ {
static_cast<char16_t>(lead),
static_cast<char16_t>(trail)
} };
er.code_units_size = 2;
er.error = error_code::ok;
}
return er;
}
inline encoded_result<char32_t> code_point_to_utf32(char32_t codepoint) {
encoded_result<char32_t> er;
er.code_units_size = 1;
er.code_units[0] = codepoint;
er.error = error_code::ok;
return er;
}
template <typename It>
inline decoded_result<It> utf8_to_code_point(It it, It last) {
decoded_result<It> dr;
if (it == last) {
dr.next = it;
dr.error = error_code::sequence_too_short;
return dr;
}
unsigned char b0 = *it;
std::size_t length = unicode_detail::sequence_length(b0);
if (length == 1) {
dr.codepoint = static_cast<char32_t>(b0);
dr.error = error_code::ok;
++it;
dr.next = it;
return dr;
}
if (unicode_detail::is_invalid(b0) || unicode_detail::is_continuation(b0)) {
dr.error = error_code::invalid_code_unit;
dr.next = it;
return dr;
}
++it;
std::array<unsigned char, 4> b;
b[0] = b0;
for (std::size_t i = 1; i < length; ++i) {
b[i] = *it;
if (!unicode_detail::is_continuation(b[i])) {
dr.error = error_code::invalid_code_unit;
dr.next = it;
return dr;
}
++it;
}
char32_t decoded;
switch (length) {
case 2:
decoded = unicode_detail::decode(b[0], b[1]);
break;
case 3:
decoded = unicode_detail::decode(b[0], b[1], b[2]);
break;
default:
decoded = unicode_detail::decode(b[0], b[1], b[2], b[3]);
break;
}
if (unicode_detail::is_overlong(decoded, length)) {
dr.error = error_code::overlong_sequence;
return dr;
}
if (unicode_detail::is_surrogate(decoded) || decoded > unicode_detail::last_code_point) {
dr.error = error_code::invalid_code_point;
return dr;
}
// then everything is fine
dr.codepoint = decoded;
dr.error = error_code::ok;
dr.next = it;
return dr;
}
template <typename It>
inline decoded_result<It> utf16_to_code_point(It it, It last) {
decoded_result<It> dr;
if (it == last) {
dr.next = it;
dr.error = error_code::sequence_too_short;
return dr;
}
char16_t lead = static_cast<char16_t>(*it);
if (!unicode_detail::is_surrogate(lead)) {
++it;
dr.codepoint = static_cast<char32_t>(lead);
dr.next = it;
dr.error = error_code::ok;
return dr;
}
if (!unicode_detail::is_lead_surrogate(lead)) {
dr.error = error_code::invalid_leading_surrogate;
dr.next = it;
return dr;
}
++it;
auto trail = *it;
if (!unicode_detail::is_trail_surrogate(trail)) {
dr.error = error_code::invalid_trailing_surrogate;
dr.next = it;
return dr;
}
dr.codepoint = unicode_detail::combine_surrogates(lead, trail);
dr.next = ++it;
dr.error = error_code::ok;
return dr;
}
template <typename It>
inline decoded_result<It> utf32_to_code_point(It it, It last) {
decoded_result<It> dr;
if (it == last) {
dr.next = it;
dr.error = error_code::sequence_too_short;
return dr;
}
dr.codepoint = static_cast<char32_t>(*it);
dr.next = ++it;
dr.error = error_code::ok;
return dr;
}
}
}
// end of sol/unicode.hpp
#include <memory>
#include <functional>
#include <utility>
#include <cstdlib>
#include <cmath>
#include <string_view>
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
#include <variant>
#endif // Apple clang screwed up
namespace sol { namespace stack {
namespace stack_detail {
template <typename Ch>
struct count_code_units_utf {
std::size_t needed_size;
count_code_units_utf() : needed_size(0) {
}
void operator()(const unicode::encoded_result<Ch> er) {
needed_size += er.code_units_size;
}
};
template <typename Ch, typename ErCh>
struct copy_code_units_utf {
Ch* target_;
copy_code_units_utf(Ch* target) : target_(target) {
}
void operator()(const unicode::encoded_result<ErCh> er) {
std::memcpy(target_, er.code_units.data(), er.code_units_size * sizeof(ErCh));
target_ += er.code_units_size;
}
};
template <typename Ch, typename F>
inline void convert(const char* strb, const char* stre, F&& f) {
char32_t cp = 0;
for (const char* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf8_to_code_point(strtarget, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
++strtarget;
}
else {
cp = dr.codepoint;
strtarget = dr.next;
}
if constexpr (std::is_same_v<Ch, char32_t>) {
auto er = unicode::code_point_to_utf32(cp);
f(er);
}
else {
auto er = unicode::code_point_to_utf16(cp);
f(er);
}
}
}
template <typename BaseCh, typename S>
inline S get_into(lua_State* L, int index, record& tracking) {
using Ch = typename S::value_type;
tracking.use(1);
size_t len;
auto utf8p = lua_tolstring(L, index, &len);
if (len < 1)
return S();
const char* strb = utf8p;
const char* stre = utf8p + len;
stack_detail::count_code_units_utf<BaseCh> count_units;
convert<BaseCh>(strb, stre, count_units);
S r(count_units.needed_size, static_cast<Ch>(0));
r.resize(count_units.needed_size);
Ch* target = &r[0];
stack_detail::copy_code_units_utf<Ch, BaseCh> copy_units(target);
convert<BaseCh>(strb, stre, copy_units);
return r;
}
} // namespace stack_detail
template <typename T, typename>
struct unqualified_getter {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
if constexpr (std::is_same_v<T, bool>) {
tracking.use(1);
return lua_toboolean(L, index) != 0;
}
else if constexpr (std::is_enum_v<T>) {
tracking.use(1);
return static_cast<T>(lua_tointegerx(L, index, nullptr));
}
else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) {
tracking.use(1);
#if SOL_LUA_VESION_I_ >= 503
if (lua_isinteger(L, index) != 0) {
return static_cast<T>(lua_tointeger(L, index));
}
#endif
return static_cast<T>(llround(lua_tonumber(L, index)));
}
else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) {
tracking.use(1);
return static_cast<T>(lua_tonumber(L, index));
}
else if constexpr (is_lua_reference_v<T>) {
tracking.use(1);
return T(L, index);
}
else if constexpr (is_unique_usertype_v<T>) {
using Real = typename unique_usertype_traits<T>::actual_type;
tracking.use(1);
void* memory = lua_touserdata(L, index);
memory = detail::align_usertype_unique<Real>(memory);
Real* mem = static_cast<Real*>(memory);
return *mem;
}
else if constexpr (meta::is_optional_v<T>) {
using ValueType = typename T::value_type;
return unqualified_check_getter<ValueType>::template get_using<T>(L, index, no_panic, tracking);
}
else if constexpr (std::is_same_v<T, luaL_Stream*>) {
luaL_Stream* pstream = static_cast<luaL_Stream*>(lua_touserdata(L, index));
return pstream;
}
else if constexpr (std::is_same_v<T, luaL_Stream>) {
luaL_Stream* pstream = static_cast<luaL_Stream*>(lua_touserdata(L, index));
return *pstream;
}
#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
else if constexpr (std::is_function_v<T> || (std::is_pointer_v<T> && std::is_function_v<std::remove_pointer_t<T>>)) {
return stack_detail::get_function_pointer<std::remove_pointer_t<T>>(L, index, tracking);
}
#endif
else {
return stack_detail::unchecked_unqualified_get<detail::as_value_tag<T>>(L, index, tracking);
}
}
};
template <typename X, typename>
struct qualified_getter {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
using Tu = meta::unqualified_t<X>;
static constexpr bool is_userdata_of_some_kind
= !std::is_reference_v<
X> && is_container_v<Tu> && std::is_default_constructible_v<Tu> && !is_lua_primitive_v<Tu> && !is_transparent_argument_v<Tu>;
if constexpr (is_userdata_of_some_kind) {
if (type_of(L, index) == type::userdata) {
return static_cast<Tu>(stack_detail::unchecked_unqualified_get<Tu>(L, index, tracking));
}
else {
return stack_detail::unchecked_unqualified_get<sol::nested<Tu>>(L, index, tracking);
}
}
else if constexpr (!std::is_reference_v<X> && is_unique_usertype_v<Tu> && !is_base_rebindable_non_void_v<unique_usertype_traits<Tu>>) {
using u_traits = unique_usertype_traits<Tu>;
using T = typename u_traits::type;
using Real = typename u_traits::actual_type;
tracking.use(1);
void* memory = lua_touserdata(L, index);
memory = detail::align_usertype_unique_destructor(memory);
detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
if (&detail::usertype_unique_alloc_destroy<T, X> == pdx) {
memory = detail::align_usertype_unique_tag<true, false>(memory);
memory = detail::align_usertype_unique<Real, true, false>(memory);
Real* mem = static_cast<Real*>(memory);
return static_cast<Real>(*mem);
}
Real r(nullptr);
if constexpr (!derive<T>::value) {
// TODO: abort / terminate, maybe only in debug modes?
return static_cast<Real>(std::move(r));
}
else {
memory = detail::align_usertype_unique_tag<true, false>(memory);
detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory);
memory = detail::align_usertype_unique<Real, true, false>(memory);
string_view ti = usertype_traits<T>::qualified_name();
int cast_operation;
if constexpr (is_base_rebindable_v<u_traits>) {
using rebind_t = typename u_traits::template rebind_base<void>;
string_view rebind_ti = usertype_traits<rebind_t>::qualified_name();
cast_operation = ic(memory, &r, ti, rebind_ti);
}
else {
string_view rebind_ti("");
cast_operation = ic(memory, &r, ti, rebind_ti);
}
switch (cast_operation) {
case 1: {
// it's a perfect match,
// alias memory directly
Real* mem = static_cast<Real*>(memory);
return static_cast<Real>(*mem);
}
case 2:
// it's a base match, return the
// aliased creation
return static_cast<Real>(std::move(r));
default:
// uh oh..
break;
}
// TODO: abort / terminate, maybe only in debug modes?
return static_cast<Real>(r);
}
}
else {
return stack_detail::unchecked_unqualified_get<Tu>(L, index, tracking);
}
}
};
template <typename T>
struct unqualified_getter<as_table_t<T>> {
using Tu = meta::unqualified_t<T>;
template <typename V>
static void push_back_at_end(std::true_type, types<V>, lua_State* L, T& cont, std::size_t) {
cont.push_back(stack::get<V>(L, -lua_size<V>::value));
}
template <typename V>
static void push_back_at_end(std::false_type, types<V> t, lua_State* L, T& cont, std::size_t idx) {
insert_at_end(meta::has_insert<Tu>(), t, L, cont, idx);
}
template <typename V>
static void insert_at_end(std::true_type, types<V>, lua_State* L, T& cont, std::size_t) {
using std::cend;
cont.insert(cend(cont), stack::get<V>(L, -lua_size<V>::value));
}
template <typename V>
static void insert_at_end(std::false_type, types<V>, lua_State* L, T& cont, std::size_t idx) {
cont[idx] = stack::get<V>(L, -lua_size<V>::value);
}
static bool max_size_check(std::false_type, T&, std::size_t) {
return false;
}
static bool max_size_check(std::true_type, T& cont, std::size_t idx) {
return idx >= cont.max_size();
}
static T get(lua_State* L, int relindex, record& tracking) {
return get(meta::is_associative<Tu>(), L, relindex, tracking);
}
static T get(std::false_type, lua_State* L, int relindex, record& tracking) {
typedef typename Tu::value_type V;
return get(types<V>(), L, relindex, tracking);
}
template <typename V>
static T get(types<V> t, lua_State* L, int relindex, record& tracking) {
tracking.use(1);
// the W4 flag is really great,
// so great that it can tell my for loops (twice nested)
// below never actually terminate
// without hitting where the gotos have infested
// so now I would get the error W4XXX unreachable
// me that the return cont at the end of this function
// which is fair until other compilers complain
// that there isn't a return and that based on
// SOME MAGICAL FORCE
// control flow falls off the end of a non-void function
// so it needs to be there for the compilers that are
// too flimsy to analyze the basic blocks...
// (I'm sure I should file a bug but those compilers are already
// in the wild; it doesn't matter if I fix them,
// someone else is still going to get some old-ass compiler
// and then bother me about the unclean build for the 30th
// time)
// "Why not an IIFE?"
// Because additional lambdas / functions which serve as
// capture-all-and-then-invoke bloat binary sizes
// by an actually detectable amount
// (one user uses sol2 pretty heavily and 22 MB of binary size
// was saved by reducing reliance on lambdas in templates)
// This would really be solved by having break N;
// be a real, proper thing...
// but instead, we have to use labels and gotos
// and earn the universal vitriol of the dogmatic
// programming community
// all in all: W4 is great!~
int index = lua_absindex(L, relindex);
T cont;
std::size_t idx = 0;
#if SOL_LUA_VESION_I_ >= 503
// This method is HIGHLY performant over regular table iteration
// thanks to the Lua API changes in 5.3
// Questionable in 5.4
for (lua_Integer i = 0;; i += lua_size<V>::value) {
if (max_size_check(meta::has_max_size<Tu>(), cont, idx)) {
// see above comment
goto done;
}
bool isnil = false;
for (int vi = 0; vi < lua_size<V>::value; ++vi) {
#if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VESION_I_ >= 600
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushinteger(L, static_cast<lua_Integer>(i + vi));
if (lua_keyin(L, index) == 0) {
// it's time to stop
isnil = true;
}
else {
// we have a key, have to get the value
lua_geti(L, index, i + vi);
}
#else
type vt = static_cast<type>(lua_geti(L, index, i + vi));
isnil = vt == type::none || vt == type::lua_nil;
#endif
if (isnil) {
if (i == 0) {
break;
}
#if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VESION_I_ >= 600
lua_pop(L, vi);
#else
lua_pop(L, (vi + 1));
#endif
// see above comment
goto done;
}
}
if (isnil) {
#if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VESION_I_ >= 600
#else
lua_pop(L, lua_size<V>::value);
#endif
continue;
}
push_back_at_end(meta::has_push_back<Tu>(), t, L, cont, idx);
++idx;
lua_pop(L, lua_size<V>::value);
}
#else
// Zzzz slower but necessary thanks to the lower version API and missing functions qq
for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
if (idx >= cont.max_size()) {
// see above comment
goto done;
}
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 2, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
bool isnil = false;
for (int vi = 0; vi < lua_size<V>::value; ++vi) {
lua_pushinteger(L, i);
lua_gettable(L, index);
type vt = type_of(L, -1);
isnil = vt == type::lua_nil;
if (isnil) {
if (i == 0) {
break;
}
lua_pop(L, (vi + 1));
// see above comment
goto done;
}
}
if (isnil)
continue;
push_back_at_end(meta::has_push_back<Tu>(), t, L, cont, idx);
++idx;
}
#endif
done:
return cont;
}
static T get(std::true_type, lua_State* L, int index, record& tracking) {
typedef typename Tu::value_type P;
typedef typename P::first_type K;
typedef typename P::second_type V;
return get(types<K, V>(), L, index, tracking);
}
template <typename K, typename V>
static T get(types<K, V>, lua_State* L, int relindex, record& tracking) {
tracking.use(1);
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 3, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
T associative;
int index = lua_absindex(L, relindex);
lua_pushnil(L);
while (lua_next(L, index) != 0) {
decltype(auto) key = stack::check_get<K>(L, -2);
if (!key) {
lua_pop(L, 1);
continue;
}
associative.emplace(std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
lua_pop(L, 1);
}
return associative;
}
};
template <typename T, typename Al>
struct unqualified_getter<as_table_t<std::forward_list<T, Al>>> {
typedef std::forward_list<T, Al> C;
static C get(lua_State* L, int relindex, record& tracking) {
return get(meta::has_key_value_pair<C>(), L, relindex, tracking);
}
static C get(std::true_type, lua_State* L, int index, record& tracking) {
typedef typename T::value_type P;
typedef typename P::first_type K;
typedef typename P::second_type V;
return get(types<K, V>(), L, index, tracking);
}
static C get(std::false_type, lua_State* L, int relindex, record& tracking) {
typedef typename C::value_type V;
return get(types<V>(), L, relindex, tracking);
}
template <typename V>
static C get(types<V>, lua_State* L, int relindex, record& tracking) {
tracking.use(1);
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 3, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
int index = lua_absindex(L, relindex);
C cont;
auto at = cont.cbefore_begin();
std::size_t idx = 0;
#if SOL_LUA_VESION_I_ >= 503
// This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3
for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
if (idx >= cont.max_size()) {
goto done;
}
bool isnil = false;
for (int vi = 0; vi < lua_size<V>::value; ++vi) {
type t = static_cast<type>(lua_geti(L, index, i + vi));
isnil = t == type::lua_nil;
if (isnil) {
if (i == 0) {
break;
}
lua_pop(L, (vi + 1));
goto done;
}
}
if (isnil)
continue;
at = cont.insert_after(at, stack::get<V>(L, -lua_size<V>::value));
++idx;
}
#else
// Zzzz slower but necessary thanks to the lower version API and missing functions qq
for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
if (idx >= cont.max_size()) {
goto done;
}
bool isnil = false;
for (int vi = 0; vi < lua_size<V>::value; ++vi) {
lua_pushinteger(L, i);
lua_gettable(L, index);
type t = type_of(L, -1);
isnil = t == type::lua_nil;
if (isnil) {
if (i == 0) {
break;
}
lua_pop(L, (vi + 1));
goto done;
}
}
if (isnil)
continue;
at = cont.insert_after(at, stack::get<V>(L, -lua_size<V>::value));
++idx;
}
#endif
done:
return cont;
}
template <typename K, typename V>
static C get(types<K, V>, lua_State* L, int relindex, record& tracking) {
tracking.use(1);
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 3, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
C associative;
auto at = associative.cbefore_begin();
int index = lua_absindex(L, relindex);
lua_pushnil(L);
while (lua_next(L, index) != 0) {
decltype(auto) key = stack::check_get<K>(L, -2);
if (!key) {
lua_pop(L, 1);
continue;
}
at = associative.emplace_after(at, std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
lua_pop(L, 1);
}
return associative;
}
};
template <typename T>
struct unqualified_getter<nested<T>> {
static T get(lua_State* L, int index, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (is_container_v<Tu>) {
if constexpr (meta::is_associative<Tu>::value) {
typedef typename T::value_type P;
typedef typename P::first_type K;
typedef typename P::second_type V;
unqualified_getter<as_table_t<T>> g;
// VC++ has a bad warning here: shut it up
(void)g;
return g.get(types<K, nested<V>>(), L, index, tracking);
}
else {
typedef typename T::value_type V;
unqualified_getter<as_table_t<T>> g;
// VC++ has a bad warning here: shut it up
(void)g;
return g.get(types<nested<V>>(), L, index, tracking);
}
}
else {
unqualified_getter<Tu> g;
// VC++ has a bad warning here: shut it up
(void)g;
return g.get(L, index, tracking);
}
}
};
template <typename T>
struct unqualified_getter<as_container_t<T>> {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
return stack::unqualified_get<T>(L, index, tracking);
}
};
template <typename T>
struct unqualified_getter<as_container_t<T>*> {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
return stack::unqualified_get<T*>(L, index, tracking);
}
};
template <>
struct unqualified_getter<userdata_value> {
static userdata_value get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return userdata_value(lua_touserdata(L, index));
}
};
template <>
struct unqualified_getter<lightuserdata_value> {
static lightuserdata_value get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lightuserdata_value(lua_touserdata(L, index));
}
};
template <typename T>
struct unqualified_getter<light<T>> {
static light<T> get(lua_State* L, int index, record& tracking) {
tracking.use(1);
void* memory = lua_touserdata(L, index);
return light<T>(static_cast<T*>(memory));
}
};
template <typename T>
struct unqualified_getter<user<T>> {
static std::add_lvalue_reference_t<T> get(lua_State* L, int index, record& tracking) {
tracking.use(1);
void* memory = lua_touserdata(L, index);
memory = detail::align_user<T>(memory);
return *static_cast<std::remove_reference_t<T>*>(memory);
}
};
template <typename T>
struct unqualified_getter<user<T*>> {
static T* get(lua_State* L, int index, record& tracking) {
tracking.use(1);
void* memory = lua_touserdata(L, index);
memory = detail::align_user<T*>(memory);
return static_cast<T*>(memory);
}
};
template <>
struct unqualified_getter<type> {
static type get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return static_cast<type>(lua_type(L, index));
}
};
template <>
struct unqualified_getter<std::string> {
static std::string get(lua_State* L, int index, record& tracking) {
tracking.use(1);
std::size_t len;
auto str = lua_tolstring(L, index, &len);
return std::string(str, len);
}
};
template <>
struct unqualified_getter<const char*> {
static const char* get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t sz;
return lua_tolstring(L, index, &sz);
}
};
template <>
struct unqualified_getter<char> {
static char get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t len;
auto str = lua_tolstring(L, index, &len);
return len > 0 ? str[0] : '\0';
}
};
template <typename Traits>
struct unqualified_getter<basic_string_view<char, Traits>> {
static string_view get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t sz;
const char* str = lua_tolstring(L, index, &sz);
return basic_string_view<char, Traits>(str, sz);
}
};
template <typename Traits, typename Al>
struct unqualified_getter<std::basic_string<wchar_t, Traits, Al>> {
using S = std::basic_string<wchar_t, Traits, Al>;
static S get(lua_State* L, int index, record& tracking) {
using Ch = meta::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t>;
return stack_detail::get_into<Ch, S>(L, index, tracking);
}
};
template <typename Traits, typename Al>
struct unqualified_getter<std::basic_string<char16_t, Traits, Al>> {
static std::basic_string<char16_t, Traits, Al> get(lua_State* L, int index, record& tracking) {
return stack_detail::get_into<char16_t, std::basic_string<char16_t, Traits, Al>>(L, index, tracking);
}
};
template <typename Traits, typename Al>
struct unqualified_getter<std::basic_string<char32_t, Traits, Al>> {
static std::basic_string<char32_t, Traits, Al> get(lua_State* L, int index, record& tracking) {
return stack_detail::get_into<char32_t, std::basic_string<char32_t, Traits, Al>>(L, index, tracking);
}
};
template <>
struct unqualified_getter<char16_t> {
static char16_t get(lua_State* L, int index, record& tracking) {
string_view utf8 = stack::get<string_view>(L, index, tracking);
const char* strb = utf8.data();
const char* stre = utf8.data() + utf8.size();
char32_t cp = 0;
auto dr = unicode::utf8_to_code_point(strb, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
}
else {
cp = dr.codepoint;
}
auto er = unicode::code_point_to_utf16(cp);
return er.code_units[0];
}
};
template <>
struct unqualified_getter<char32_t> {
static char32_t get(lua_State* L, int index, record& tracking) {
string_view utf8 = stack::get<string_view>(L, index, tracking);
const char* strb = utf8.data();
const char* stre = utf8.data() + utf8.size();
char32_t cp = 0;
auto dr = unicode::utf8_to_code_point(strb, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
}
else {
cp = dr.codepoint;
}
auto er = unicode::code_point_to_utf32(cp);
return er.code_units[0];
}
};
template <>
struct unqualified_getter<wchar_t> {
static wchar_t get(lua_State* L, int index, record& tracking) {
typedef meta::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t> Ch;
unqualified_getter<Ch> g;
(void)g;
auto c = g.get(L, index, tracking);
return static_cast<wchar_t>(c);
}
};
template <>
struct unqualified_getter<meta_function> {
static meta_function get(lua_State* L, int index, record& tracking) {
tracking.use(1);
const char* name = unqualified_getter<const char*> {}.get(L, index, tracking);
const auto& mfnames = meta_function_names();
for (std::size_t i = 0; i < mfnames.size(); ++i)
if (mfnames[i] == name)
return static_cast<meta_function>(i);
return meta_function::construct;
}
};
template <>
struct unqualified_getter<lua_nil_t> {
static lua_nil_t get(lua_State*, int, record& tracking) {
tracking.use(1);
return lua_nil;
}
};
template <>
struct unqualified_getter<std::nullptr_t> {
static std::nullptr_t get(lua_State*, int, record& tracking) {
tracking.use(1);
return nullptr;
}
};
template <>
struct unqualified_getter<nullopt_t> {
static nullopt_t get(lua_State*, int, record& tracking) {
tracking.use(1);
return nullopt;
}
};
template <>
struct unqualified_getter<this_state> {
static this_state get(lua_State* L, int, record& tracking) {
tracking.use(0);
return this_state(L);
}
};
template <>
struct unqualified_getter<this_main_state> {
static this_main_state get(lua_State* L, int, record& tracking) {
tracking.use(0);
return this_main_state(main_thread(L, L));
}
};
template <>
struct unqualified_getter<lua_CFunction> {
static lua_CFunction get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lua_tocfunction(L, index);
}
};
template <>
struct unqualified_getter<c_closure> {
static c_closure get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return c_closure(lua_tocfunction(L, index), -1);
}
};
template <>
struct unqualified_getter<error> {
static error get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t sz = 0;
const char* err = lua_tolstring(L, index, &sz);
if (err == nullptr) {
return error(detail::direct_error, "");
}
return error(detail::direct_error, std::string(err, sz));
}
};
template <>
struct unqualified_getter<void*> {
static void* get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lua_touserdata(L, index);
}
};
template <>
struct unqualified_getter<const void*> {
static const void* get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lua_touserdata(L, index);
}
};
template <typename T>
struct unqualified_getter<detail::as_value_tag<T>> {
static T* get_no_lua_nil(lua_State* L, int index, record& tracking) {
void* memory = lua_touserdata(L, index);
#if SOL_IS_ON(SOL_USE_INTEROP_I_)
auto ugr = stack_detail::interop_get<T>(L, index, memory, tracking);
if (ugr.first) {
return ugr.second;
}
#endif // interop extensibility
tracking.use(1);
void* rawdata = detail::align_usertype_pointer(memory);
void** pudata = static_cast<void**>(rawdata);
void* udata = *pudata;
return get_no_lua_nil_from(L, udata, index, tracking);
}
static T* get_no_lua_nil_from(lua_State* L, void* udata, int index, record&) {
bool has_derived = derive<T>::value || weak_derive<T>::value;
if (has_derived) {
if (lua_getmetatable(L, index) == 1) {
lua_getfield(L, -1, &detail::base_class_cast_key()[0]);
if (type_of(L, -1) != type::lua_nil) {
void* basecastdata = lua_touserdata(L, -1);
detail::inheritance_cast_function ic = reinterpret_cast<detail::inheritance_cast_function>(basecastdata);
// use the casting function to properly adjust the pointer for the desired T
udata = ic(udata, usertype_traits<T>::qualified_name());
}
lua_pop(L, 2);
}
}
T* obj = static_cast<T*>(udata);
return obj;
}
static T& get(lua_State* L, int index, record& tracking) {
return *get_no_lua_nil(L, index, tracking);
}
};
template <typename T>
struct unqualified_getter<detail::as_pointer_tag<T>> {
static T* get(lua_State* L, int index, record& tracking) {
type t = type_of(L, index);
if (t == type::lua_nil) {
tracking.use(1);
return nullptr;
}
unqualified_getter<detail::as_value_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get_no_lua_nil(L, index, tracking);
}
};
template <typename T>
struct unqualified_getter<non_null<T*>> {
static T* get(lua_State* L, int index, record& tracking) {
unqualified_getter<detail::as_value_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get_no_lua_nil(L, index, tracking);
}
};
template <typename T>
struct unqualified_getter<T&> {
static T& get(lua_State* L, int index, record& tracking) {
unqualified_getter<detail::as_value_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get(L, index, tracking);
}
};
template <typename T>
struct unqualified_getter<std::reference_wrapper<T>> {
static T& get(lua_State* L, int index, record& tracking) {
unqualified_getter<T&> g;
// Avoid VC++ warning
(void)g;
return g.get(L, index, tracking);
}
};
template <typename T>
struct unqualified_getter<T*> {
static T* get(lua_State* L, int index, record& tracking) {
#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
if constexpr (std::is_function_v<T>) {
return stack_detail::get_function_pointer<T>(L, index, tracking);
}
else {
unqualified_getter<detail::as_pointer_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get(L, index, tracking);
}
#else
unqualified_getter<detail::as_pointer_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get(L, index, tracking);
#endif
}
};
template <typename... Tn>
struct unqualified_getter<std::tuple<Tn...>> {
typedef std::tuple<decltype(stack::get<Tn>(nullptr, 0))...> R;
template <typename... Args>
static R apply(std::index_sequence<>, lua_State*, int, record&, Args&&... args) {
// Fuck you too, VC++
return R { std::forward<Args>(args)... };
}
template <std::size_t I, std::size_t... Ix, typename... Args>
static R apply(std::index_sequence<I, Ix...>, lua_State* L, int index, record& tracking, Args&&... args) {
// Fuck you too, VC++
typedef std::tuple_element_t<I, std::tuple<Tn...>> T;
return apply(std::index_sequence<Ix...>(), L, index, tracking, std::forward<Args>(args)..., stack::get<T>(L, index + tracking.used, tracking));
}
static R get(lua_State* L, int index, record& tracking) {
return apply(std::make_index_sequence<sizeof...(Tn)>(), L, index, tracking);
}
};
template <typename A, typename B>
struct unqualified_getter<std::pair<A, B>> {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
return std::pair<decltype(stack::get<A>(L, index)), decltype(stack::get<B>(L, index))> { stack::get<A>(L, index, tracking),
stack::get<B>(L, index + tracking.used, tracking) };
}
};
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
template <typename... Tn>
struct unqualified_getter<std::variant<Tn...>> {
using V = std::variant<Tn...>;
static V get_one(std::integral_constant<std::size_t, std::variant_size_v<V>>, lua_State* L, int index, record& tracking) {
(void)L;
(void)index;
(void)tracking;
if constexpr (std::variant_size_v<V> == 0) {
return V();
}
else {
// using T = std::variant_alternative_t<0, V>;
std::abort();
// return V(std::in_place_index<0>, stack::get<T>(L, index, tracking));
}
}
template <std::size_t I>
static V get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, record& tracking) {
typedef std::variant_alternative_t<I, V> T;
record temp_tracking = tracking;
if (stack::check<T>(L, index, no_panic, temp_tracking)) {
tracking = temp_tracking;
return V(std::in_place_index<I>, stack::get<T>(L, index));
}
return get_one(std::integral_constant<std::size_t, I + 1>(), L, index, tracking);
}
static V get(lua_State* L, int index, record& tracking) {
return get_one(std::integral_constant<std::size_t, 0>(), L, index, tracking);
}
};
#endif // variant
}} // namespace sol::stack
// end of sol/stack_get_unqualified.hpp
// beginning of sol/stack_get_qualified.hpp
namespace sol {
namespace stack {
// There are no more enable_ifs that can be used here,
// so this is just for posterity, I guess?
// maybe I'll fill this file in later.
}
} // namespace sol::stack
// end of sol/stack_get_qualified.hpp
// end of sol/stack_get.hpp
// beginning of sol/stack_check_get.hpp
// beginning of sol/stack_check_get_unqualified.hpp
#include <cstdlib>
#include <cmath>
#include <optional>
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
#include <variant>
#endif // variant shenanigans (thanks, Mac OSX)
namespace sol { namespace stack {
template <typename T, typename>
struct unqualified_check_getter {
typedef decltype(stack_detail::unchecked_unqualified_get<T>(nullptr, -1, std::declval<record&>())) R;
template <typename Optional, typename Handler>
static Optional get_using(lua_State* L, int index, Handler&& handler, record& tracking) {
if constexpr (!meta::meta_detail::is_adl_sol_lua_check_v<T> && !meta::meta_detail::is_adl_sol_lua_get_v<T>) {
if constexpr (is_lua_reference_v<T>) {
// actually check if it's none here, otherwise
// we'll have a none object inside an optional!
bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, no_panic);
if (!success) {
// expected type, actual type
tracking.use(static_cast<int>(success));
handler(L, index, type::poly, type_of(L, index), "");
return detail::associated_nullopt_v<Optional>;
}
return stack_detail::unchecked_get<T>(L, index, tracking);
}
else if constexpr ((std::is_integral_v<T> || std::is_same_v<T, lua_Integer>)&&!std::is_same_v<T, bool>) {
#if SOL_LUA_VESION_I_ >= 503
if (lua_isinteger(L, index) != 0) {
tracking.use(1);
return static_cast<T>(lua_tointeger(L, index));
}
#endif
int isnum = 0;
const lua_Number value = lua_tonumberx(L, index, &isnum);
if (isnum != 0) {
#if SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_)
const auto integer_value = llround(value);
if (static_cast<lua_Number>(integer_value) == value) {
tracking.use(1);
return static_cast<T>(integer_value);
}
#else
tracking.use(1);
return static_cast<T>(value);
#endif
}
const type t = type_of(L, index);
tracking.use(static_cast<int>(t != type::none));
handler(L, index, type::number, t, "not an integer");
return detail::associated_nullopt_v<Optional>;
}
else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) {
int isnum = 0;
lua_Number value = lua_tonumberx(L, index, &isnum);
if (isnum == 0) {
type t = type_of(L, index);
tracking.use(static_cast<int>(t != type::none));
handler(L, index, type::number, t, "not a valid floating point number");
return detail::associated_nullopt_v<Optional>;
}
tracking.use(1);
return static_cast<T>(value);
}
else if constexpr (std::is_enum_v<T> && !meta::any_same_v<T, meta_function, type>) {
int isnum = 0;
lua_Integer value = lua_tointegerx(L, index, &isnum);
if (isnum == 0) {
type t = type_of(L, index);
tracking.use(static_cast<int>(t != type::none));
handler(L, index, type::number, t, "not a valid enumeration value");
return detail::associated_nullopt_v<Optional>;
}
tracking.use(1);
return static_cast<T>(value);
}
else {
if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) {
tracking.use(static_cast<int>(!lua_isnone(L, index)));
return detail::associated_nullopt_v<Optional>;
}
return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
}
}
else {
if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) {
tracking.use(static_cast<int>(!lua_isnone(L, index)));
return detail::associated_nullopt_v<Optional>;
}
return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
}
}
template <typename Handler>
static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) {
return get_using<optional<R>>(L, index, std::forward<Handler>(handler), tracking);
}
};
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
template <typename... Tn, typename C>
struct unqualified_check_getter<std::variant<Tn...>, C> {
typedef std::variant<Tn...> V;
typedef std::variant_size<V> V_size;
typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;
template <typename Handler>
static optional<V> get_empty(std::true_type, lua_State*, int, Handler&&, record&) {
return nullopt;
}
template <typename Handler>
static optional<V> get_empty(std::false_type, lua_State* L, int index, Handler&& handler, record&) {
// This should never be reached...
// please check your code and understand what you did to bring yourself here
// maybe file a bug report, or 5
handler(
L, index, type::poly, type_of(L, index), "this variant code should never be reached: if it has, you have done something so terribly wrong");
return nullopt;
}
template <typename Handler>
static optional<V> get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) {
return get_empty(V_is_empty(), L, index, std::forward<Handler>(handler), tracking);
}
template <std::size_t I, typename Handler>
static optional<V> get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) {
typedef std::variant_alternative_t<I - 1, V> T;
if (stack::check<T>(L, index, no_panic, tracking)) {
return V(std::in_place_index<I - 1>, stack::get<T>(L, index));
}
return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking);
}
template <typename Handler>
static optional<V> get(lua_State* L, int index, Handler&& handler, record& tracking) {
return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking);
}
};
#endif // standard variant
}} // namespace sol::stack
// end of sol/stack_check_get_unqualified.hpp
// beginning of sol/stack_check_get_qualified.hpp
namespace sol { namespace stack {
template <typename T, typename C>
struct qualified_check_getter {
typedef decltype(stack_detail::unchecked_get<T>(nullptr, -1, std::declval<record&>())) R;
template <typename Handler>
static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) {
if constexpr (is_lua_reference_v<T>) {
// actually check if it's none here, otherwise
// we'll have a none object inside an optional!
bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, no_panic);
if (!success) {
// expected type, actual type
tracking.use(static_cast<int>(success));
handler(L, index, type::poly, type_of(L, index), "");
return nullopt;
}
return stack_detail::unchecked_get<T>(L, index, tracking);
}
else {
if (!check<T>(L, index, std::forward<Handler>(handler))) {
tracking.use(static_cast<int>(!lua_isnone(L, index)));
return nullopt;
}
return stack_detail::unchecked_get<T>(L, index, tracking);
}
}
};
template <typename T>
struct qualified_getter<T, std::enable_if_t<meta::is_optional_v<T>>> {
static T get(lua_State* L, int index, record& tracking) {
using ValueType = typename meta::unqualified_t<T>::value_type;
if constexpr (is_lua_reference_v<ValueType>) {
// actually check if it's none here, otherwise
// we'll have a none object inside an optional!
bool success = lua_isnoneornil(L, index) == 0 && stack::check<ValueType>(L, index, no_panic);
if (!success) {
// expected type, actual type
tracking.use(static_cast<int>(success));
return {};
}
return stack_detail::unchecked_get<ValueType>(L, index, tracking);
}
else {
if (!check<ValueType>(L, index, &no_panic)) {
tracking.use(static_cast<int>(!lua_isnone(L, index)));
return {};
}
return stack_detail::unchecked_get<ValueType>(L, index, tracking);
}
}
};
}} // namespace sol::stack
// end of sol/stack_check_get_qualified.hpp
// end of sol/stack_check_get.hpp
// beginning of sol/stack_push.hpp
#include <memory>
#include <type_traits>
#include <cassert>
#include <limits>
#include <cmath>
#include <string_view>
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
#include <variant>
#endif // Can use variant
namespace sol { namespace stack {
namespace stack_detail {
template <typename T>
inline bool integer_value_fits(const T& value) {
if constexpr (sizeof(T) < sizeof(lua_Integer) || (std::is_signed_v<T> && sizeof(T) == sizeof(lua_Integer))) {
(void)value;
return true;
}
else {
auto u_min = static_cast<std::intmax_t>((std::numeric_limits<lua_Integer>::min)());
auto u_max = static_cast<std::uintmax_t>((std::numeric_limits<lua_Integer>::max)());
auto t_min = static_cast<std::intmax_t>((std::numeric_limits<T>::min)());
auto t_max = static_cast<std::uintmax_t>((std::numeric_limits<T>::max)());
return (u_min <= t_min || value >= static_cast<T>(u_min)) && (u_max >= t_max || value <= static_cast<T>(u_max));
}
}
template <typename T>
int msvc_is_ass_with_if_constexpr_push_enum(std::true_type, lua_State* L, const T& value) {
if constexpr (meta::any_same_v<std::underlying_type_t<T>, char /*, char8_t*/, char16_t, char32_t>) {
if constexpr (std::is_signed_v<T>) {
return stack::push(L, static_cast<std::int_least32_t>(value));
}
else {
return stack::push(L, static_cast<std::uint_least32_t>(value));
}
}
else {
return stack::push(L, static_cast<std::underlying_type_t<T>>(value));
}
}
template <typename T>
int msvc_is_ass_with_if_constexpr_push_enum(std::false_type, lua_State*, const T&) {
return 0;
}
} // namespace stack_detail
inline int push_environment_of(lua_State* L, int index = -1) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_environment);
#endif // make sure stack doesn't overflow
#if SOL_LUA_VESION_I_ < 502
// Use lua_getfenv
lua_getfenv(L, index);
#else
// Use upvalues as explained in Lua 5.2 and beyond's manual
if (lua_getupvalue(L, index, 1) == nullptr) {
push(L, lua_nil);
return 1;
}
#endif
return 1;
}
template <typename T>
int push_environment_of(const T& target) {
target.push();
return push_environment_of(target.lua_state(), -1) + 1;
}
template <typename T>
struct unqualified_pusher<detail::as_value_tag<T>> {
template <typename F, typename... Args>
static int push_fx(lua_State* L, F&& f, Args&&... args) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
#endif // make sure stack doesn't overflow
// Basically, we store all user-data like this:
// If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new
// data in the first sizeof(T*) bytes, and then however many bytes it takes to
// do the actual object. Things that are std::ref or plain T* are stored as
// just the sizeof(T*), and nothing else.
T* obj = detail::usertype_allocate<T>(L);
f();
std::allocator<T> alloc {};
std::allocator_traits<std::allocator<T>>::construct(alloc, obj, std::forward<Args>(args)...);
return 1;
}
template <typename K, typename... Args>
static int push_keyed(lua_State* L, K&& k, Args&&... args) {
stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<T>);
return push_fx(L, fx, std::forward<Args>(args)...);
}
template <typename Arg, typename... Args>
static int push(lua_State* L, Arg&& arg, Args&&... args) {
if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) {
(void)arg;
return push_fx(L, std::forward<Args>(args)...);
}
else {
return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...);
}
}
static int push(lua_State* L) {
return push_keyed(L, usertype_traits<T>::metatable());
}
};
template <typename T>
struct unqualified_pusher<detail::as_pointer_tag<T>> {
typedef meta::unqualified_t<T> U;
template <typename F>
static int push_fx(lua_State* L, F&& f, T* obj) {
if (obj == nullptr)
return stack::push(L, lua_nil);
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
#endif // make sure stack doesn't overflow
T** pref = detail::usertype_allocate_pointer<T>(L);
f();
*pref = obj;
return 1;
}
template <typename K>
static int push_keyed(lua_State* L, K&& k, T* obj) {
stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<U*>);
return push_fx(L, fx, obj);
}
template <typename Arg, typename... Args>
static int push(lua_State* L, Arg&& arg, Args&&... args) {
if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) {
(void)arg;
return push_fx(L, std::forward<Args>(args)...);
}
else {
return push_keyed(L, usertype_traits<U*>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...);
}
}
};
template <>
struct unqualified_pusher<detail::as_reference_tag> {
template <typename T>
static int push(lua_State* L, T&& obj) {
return stack::push(L, detail::ptr(obj));
}
};
namespace stack_detail {
template <typename T>
struct uu_pusher {
using u_traits = unique_usertype_traits<T>;
using P = typename u_traits::type;
using Real = typename u_traits::actual_type;
template <typename Arg, typename... Args>
static int push(lua_State* L, Arg&& arg, Args&&... args) {
if constexpr (std::is_base_of_v<Real, meta::unqualified_t<Arg>>) {
if (u_traits::is_null(arg)) {
return stack::push(L, lua_nil);
}
return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
else {
return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
}
template <typename... Args>
static int push_deep(lua_State* L, Args&&... args) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
#endif // make sure stack doesn't overflow
P** pref = nullptr;
detail::unique_destructor* fx = nullptr;
detail::unique_tag* id = nullptr;
Real* mem = detail::usertype_unique_allocate<P, Real>(L, pref, fx, id);
if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<std::remove_cv_t<P>>>::metatable()[0]) == 1) {
detail::lua_reg_table l {};
int index = 0;
detail::indexed_insert insert_fx(l, index);
detail::insert_default_registrations<P>(insert_fx, detail::property_always_true);
l[index] = { to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() };
luaL_setfuncs(L, l, 0);
}
lua_setmetatable(L, -2);
*fx = detail::usertype_unique_alloc_destroy<P, Real>;
*id = &detail::inheritance<P>::template type_unique_cast<Real>;
detail::default_construct::construct(mem, std::forward<Args>(args)...);
*pref = unique_usertype_traits<T>::get(*mem);
return 1;
}
};
} // namespace stack_detail
template <typename T>
struct unqualified_pusher<detail::as_unique_tag<T>> {
template <typename... Args>
static int push(lua_State* L, Args&&... args) {
stack_detail::uu_pusher<T> p;
(void)p;
return p.push(L, std::forward<Args>(args)...);
}
};
template <typename T, typename>
struct unqualified_pusher {
template <typename... Args>
static int push(lua_State* L, Args&&... args) {
using Tu = meta::unqualified_t<T>;
if constexpr (is_lua_reference_v<Tu>) {
using int_arr = int[];
int_arr p { (std::forward<Args>(args).push(L))... };
return p[0];
}
else if constexpr (std::is_same_v<Tu, bool>) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushboolean(L, std::forward<Args>(args)...);
return 1;
}
else if constexpr (std::is_integral_v<Tu> || std::is_same_v<Tu, lua_Integer>) {
const Tu& value(std::forward<Args>(args)...);
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_integral);
#endif // make sure stack doesn't overflow
#if SOL_LUA_VESION_I_ >= 503
if (stack_detail::integer_value_fits<Tu>(value)) {
lua_pushinteger(L, static_cast<lua_Integer>(value));
return 1;
}
#endif // Lua 5.3 and above
#if SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_)
if (static_cast<T>(llround(static_cast<lua_Number>(value))) != value) {
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
// Is this really worth it?
assert(false && "integer value will be misrepresented in lua");
lua_pushinteger(L, static_cast<lua_Integer>(value));
return 1;
#else
throw error(detail::direct_error, "integer value will be misrepresented in lua");
#endif // No Exceptions
}
#endif // Safe Numerics and Number Precision Check
lua_pushnumber(L, static_cast<lua_Number>(value));
return 1;
}
else if constexpr (std::is_floating_point_v<Tu> || std::is_same_v<Tu, lua_Number>) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_floating);
#endif // make sure stack doesn't overflow
lua_pushnumber(L, std::forward<Args>(args)...);
return 1;
}
else if constexpr (std::is_same_v<Tu, luaL_Stream*>) {
luaL_Stream* source { std::forward<Args>(args)... };
luaL_Stream* stream = static_cast<luaL_Stream*>(lua_newuserdata(L, sizeof(luaL_Stream)));
stream->f = source->f;
#if SOL_IS_ON(SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_)
stream->closef = source->closef;
#endif // LuaJIT and Lua 5.1 and below do not have
return 1;
}
else if constexpr (std::is_same_v<Tu, luaL_Stream>) {
luaL_Stream& source(std::forward<Args>(args)...);
luaL_Stream* stream = static_cast<luaL_Stream*>(lua_newuserdata(L, sizeof(luaL_Stream)));
stream->f = source.f;
#if SOL_IS_ON(SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_)
stream->closef = source.closef;
#endif // LuaJIT and Lua 5.1 and below do not have
return 1;
}
else if constexpr (std::is_enum_v<Tu>) {
return stack_detail::msvc_is_ass_with_if_constexpr_push_enum(std::true_type(), L, std::forward<Args>(args)...);
}
else if constexpr (std::is_pointer_v<Tu>) {
return stack::push<detail::as_pointer_tag<std::remove_pointer_t<T>>>(L, std::forward<Args>(args)...);
}
else if constexpr (is_unique_usertype_v<Tu>) {
return stack::push<detail::as_unique_tag<T>>(L, std::forward<Args>(args)...);
}
else {
return stack::push<detail::as_value_tag<T>>(L, std::forward<Args>(args)...);
}
}
};
template <typename T>
struct unqualified_pusher<std::reference_wrapper<T>> {
static int push(lua_State* L, const std::reference_wrapper<T>& t) {
return stack::push(L, std::addressof(detail::deref(t.get())));
}
};
template <typename T>
struct unqualified_pusher<detail::as_table_tag<T>> {
using has_kvp = meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>;
static int push(lua_State* L, const T& tablecont) {
return push(has_kvp(), std::false_type(), L, tablecont);
}
static int push(lua_State* L, const T& tablecont, nested_tag_t) {
return push(has_kvp(), std::true_type(), L, tablecont);
}
static int push(std::true_type, lua_State* L, const T& tablecont) {
return push(has_kvp(), std::true_type(), L, tablecont);
}
static int push(std::false_type, lua_State* L, const T& tablecont) {
return push(has_kvp(), std::false_type(), L, tablecont);
}
template <bool is_nested>
static int push(std::true_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) {
auto& cont = detail::deref(detail::unwrap(tablecont));
lua_createtable(L, static_cast<int>(cont.size()), 0);
int tableindex = lua_gettop(L);
for (const auto& pair : cont) {
if (is_nested) {
set_field(L, pair.first, as_nested_ref(pair.second), tableindex);
}
else {
set_field(L, pair.first, pair.second, tableindex);
}
}
return 1;
}
template <bool is_nested>
static int push(std::false_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) {
auto& cont = detail::deref(detail::unwrap(tablecont));
lua_createtable(L, stack_detail::get_size_hint(cont), 0);
int tableindex = lua_gettop(L);
std::size_t index = 1;
for (const auto& i : cont) {
#if SOL_LUA_VESION_I_ >= 503
int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i);
for (int pi = 0; pi < p; ++pi) {
lua_seti(L, tableindex, static_cast<lua_Integer>(index++));
}
#else
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushinteger(L, static_cast<lua_Integer>(index));
int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i);
if (p == 1) {
++index;
lua_settable(L, tableindex);
}
else {
int firstindex = tableindex + 1 + 1;
for (int pi = 0; pi < p; ++pi) {
stack::push(L, index);
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushvalue(L, firstindex);
lua_settable(L, tableindex);
++index;
++firstindex;
}
lua_pop(L, 1 + p);
}
#endif // Lua Version 5.3 and others
}
// TODO: figure out a better way to do this...?
// set_field(L, -1, cont.size());
return 1;
}
};
template <typename T>
struct unqualified_pusher<as_table_t<T>> {
static int push(lua_State* L, const T& v) {
using inner_t = std::remove_pointer_t<meta::unwrap_unqualified_t<T>>;
if constexpr (is_container_v<inner_t>) {
return stack::push<detail::as_table_tag<T>>(L, v);
}
else {
return stack::push(L, v);
}
}
};
template <typename T>
struct unqualified_pusher<nested<T>> {
static int push(lua_State* L, const T& tablecont) {
using Tu = meta::unwrap_unqualified_t<T>;
using inner_t = std::remove_pointer_t<Tu>;
if constexpr (is_container_v<inner_t>) {
return stack::push<detail::as_table_tag<T>>(L, tablecont, nested_tag);
}
else {
return stack::push<Tu>(L, tablecont);
}
}
};
template <typename T>
struct unqualified_pusher<std::initializer_list<T>> {
static int push(lua_State* L, const std::initializer_list<T>& il) {
unqualified_pusher<detail::as_table_tag<std::initializer_list<T>>> p {};
// silence annoying VC++ warning
(void)p;
return p.push(L, il);
}
};
template <>
struct unqualified_pusher<lua_nil_t> {
static int push(lua_State* L, lua_nil_t) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushnil(L);
return 1;
}
};
template <>
struct unqualified_pusher<stack_count> {
static int push(lua_State*, stack_count st) {
return st.count;
}
};
template <>
struct unqualified_pusher<metatable_key_t> {
static int push(lua_State* L, metatable_key_t) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushlstring(L, to_string(meta_function::metatable).c_str(), 4);
return 1;
}
};
template <>
struct unqualified_pusher<std::remove_pointer_t<lua_CFunction>> {
static int push(lua_State* L, lua_CFunction func, int n = 0) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushcclosure(L, func, n);
return 1;
}
};
template <>
struct unqualified_pusher<lua_CFunction> {
static int push(lua_State* L, lua_CFunction func, int n = 0) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushcclosure(L, func, n);
return 1;
}
};
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
template <>
struct unqualified_pusher<std::remove_pointer_t<detail::lua_CFunction_noexcept>> {
static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushcclosure(L, func, n);
return 1;
}
};
template <>
struct unqualified_pusher<detail::lua_CFunction_noexcept> {
static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushcclosure(L, func, n);
return 1;
}
};
#endif // noexcept function type
template <>
struct unqualified_pusher<c_closure> {
static int push(lua_State* L, c_closure cc) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushcclosure(L, cc.c_function, cc.upvalues);
return 1;
}
};
template <typename Arg, typename... Args>
struct unqualified_pusher<closure<Arg, Args...>> {
template <std::size_t... I, typename T>
static int push(std::index_sequence<I...>, lua_State* L, T&& c) {
using f_tuple = decltype(std::forward<T>(c).upvalues);
int pushcount = multi_push(L, std::get<I>(std::forward<f_tuple>(std::forward<T>(c).upvalues))...);
return stack::push(L, c_closure(c.c_function, pushcount));
}
template <typename T>
static int push(lua_State* L, T&& c) {
return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c));
}
};
template <>
struct unqualified_pusher<void*> {
static int push(lua_State* L, void* userdata) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushlightuserdata(L, userdata);
return 1;
}
};
template <>
struct unqualified_pusher<const void*> {
static int push(lua_State* L, const void* userdata) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushlightuserdata(L, const_cast<void*>(userdata));
return 1;
}
};
template <>
struct unqualified_pusher<lightuserdata_value> {
static int push(lua_State* L, lightuserdata_value userdata) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushlightuserdata(L, userdata);
return 1;
}
};
template <typename T>
struct unqualified_pusher<light<T>> {
static int push(lua_State* L, light<T> l) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushlightuserdata(L, static_cast<void*>(l.value));
return 1;
}
};
template <typename T>
struct unqualified_pusher<user<T>> {
template <bool with_meta = true, typename Key, typename... Args>
static int push_with(lua_State* L, Key&& name, Args&&... args) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
#endif // make sure stack doesn't overflow
// A dumb pusher
T* data = detail::user_allocate<T>(L);
if (with_meta) {
// Make sure we have a plain GC set for this data
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
if (luaL_newmetatable(L, name) != 0) {
lua_CFunction cdel = detail::user_alloc_destruct<T>;
lua_pushcclosure(L, cdel, 0);
lua_setfield(L, -2, "__gc");
}
lua_setmetatable(L, -2);
}
std::allocator<T> alloc {};
std::allocator_traits<std::allocator<T>>::construct(alloc, data, std::forward<Args>(args)...);
return 1;
}
template <typename Arg, typename... Args>
static int push(lua_State* L, Arg&& arg, Args&&... args) {
if constexpr (std::is_same_v<meta::unqualified_t<Arg>, metatable_key_t>) {
const auto name = &arg[0];
return push_with<true>(L, name, std::forward<Args>(args)...);
}
else if constexpr (std::is_same_v<meta::unqualified_t<Arg>, no_metatable_t>) {
(void)arg;
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with<false>(L, name, std::forward<Args>(args)...);
}
else {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
}
static int push(lua_State* L, const user<T>& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with(L, name, u.value);
}
static int push(lua_State* L, user<T>&& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with(L, name, std::move(u.value));
}
static int push(lua_State* L, no_metatable_t, const user<T>& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with<false>(L, name, u.value);
}
static int push(lua_State* L, no_metatable_t, user<T>&& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with<false>(L, name, std::move(u.value));
}
};
template <>
struct unqualified_pusher<userdata_value> {
static int push(lua_State* L, userdata_value data) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
#endif // make sure stack doesn't overflow
void** ud = detail::usertype_allocate_pointer<void>(L);
*ud = data.value;
return 1;
}
};
template <>
struct unqualified_pusher<const char*> {
static int push_sized(lua_State* L, const char* str, std::size_t len) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
#endif // make sure stack doesn't overflow
lua_pushlstring(L, str, len);
return 1;
}
static int push(lua_State* L, const char* str) {
if (str == nullptr)
return stack::push(L, lua_nil);
return push_sized(L, str, std::char_traits<char>::length(str));
}
static int push(lua_State* L, const char* strb, const char* stre) {
return push_sized(L, strb, stre - strb);
}
static int push(lua_State* L, const char* str, std::size_t len) {
return push_sized(L, str, len);
}
};
template <>
struct unqualified_pusher<char*> {
static int push_sized(lua_State* L, const char* str, std::size_t len) {
unqualified_pusher<const char*> p {};
(void)p;
return p.push_sized(L, str, len);
}
static int push(lua_State* L, const char* str) {
unqualified_pusher<const char*> p {};
(void)p;
return p.push(L, str);
}
static int push(lua_State* L, const char* strb, const char* stre) {
unqualified_pusher<const char*> p {};
(void)p;
return p.push(L, strb, stre);
}
static int push(lua_State* L, const char* str, std::size_t len) {
unqualified_pusher<const char*> p {};
(void)p;
return p.push(L, str, len);
}
};
template <size_t N>
struct unqualified_pusher<char[N]> {
static int push(lua_State* L, const char (&str)[N]) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
#endif // make sure stack doesn't overflow
lua_pushlstring(L, str, std::char_traits<char>::length(str));
return 1;
}
static int push(lua_State* L, const char (&str)[N], std::size_t sz) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
#endif // make sure stack doesn't overflow
lua_pushlstring(L, str, sz);
return 1;
}
};
template <>
struct unqualified_pusher<char> {
static int push(lua_State* L, char c) {
const char str[2] = { c, '\0' };
return stack::push(L, static_cast<const char*>(str), 1);
}
};
template <typename Ch, typename Traits, typename Al>
struct unqualified_pusher<std::basic_string<Ch, Traits, Al>> {
static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str) {
if constexpr (!std::is_same_v<Ch, char>) {
return stack::push(L, str.data(), str.size());
}
else {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
#endif // make sure stack doesn't overflow
lua_pushlstring(L, str.c_str(), str.size());
return 1;
}
}
static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str, std::size_t sz) {
if constexpr (!std::is_same_v<Ch, char>) {
return stack::push(L, str.data(), sz);
}
else {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
#endif // make sure stack doesn't overflow
lua_pushlstring(L, str.c_str(), sz);
return 1;
}
}
};
template <typename Ch, typename Traits>
struct unqualified_pusher<basic_string_view<Ch, Traits>> {
static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv) {
return stack::push(L, sv.data(), sv.length());
}
static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv, std::size_t n) {
return stack::push(L, sv.data(), n);
}
};
template <>
struct unqualified_pusher<meta_function> {
static int push(lua_State* L, meta_function m) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_meta_function_name);
#endif // make sure stack doesn't overflow
const std::string& str = to_string(m);
lua_pushlstring(L, str.c_str(), str.size());
return 1;
}
};
template <>
struct unqualified_pusher<absolute_index> {
static int push(lua_State* L, absolute_index ai) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushvalue(L, ai);
return 1;
}
};
template <>
struct unqualified_pusher<raw_index> {
static int push(lua_State* L, raw_index ri) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushvalue(L, ri);
return 1;
}
};
template <>
struct unqualified_pusher<ref_index> {
static int push(lua_State* L, ref_index ri) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_rawgeti(L, LUA_REGISTRYINDEX, ri);
return 1;
}
};
template <>
struct unqualified_pusher<const wchar_t*> {
static int push(lua_State* L, const wchar_t* wstr) {
return push(L, wstr, std::char_traits<wchar_t>::length(wstr));
}
static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) {
return push(L, wstr, wstr + sz);
}
static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
if constexpr (sizeof(wchar_t) == 2) {
const char16_t* sb = reinterpret_cast<const char16_t*>(strb);
const char16_t* se = reinterpret_cast<const char16_t*>(stre);
return stack::push(L, sb, se);
}
else {
const char32_t* sb = reinterpret_cast<const char32_t*>(strb);
const char32_t* se = reinterpret_cast<const char32_t*>(stre);
return stack::push(L, sb, se);
}
}
};
template <>
struct unqualified_pusher<wchar_t*> {
static int push(lua_State* L, const wchar_t* str) {
unqualified_pusher<const wchar_t*> p {};
(void)p;
return p.push(L, str);
}
static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
unqualified_pusher<const wchar_t*> p {};
(void)p;
return p.push(L, strb, stre);
}
static int push(lua_State* L, const wchar_t* str, std::size_t len) {
unqualified_pusher<const wchar_t*> p {};
(void)p;
return p.push(L, str, len);
}
};
template <>
struct unqualified_pusher<const char16_t*> {
static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) {
char* target = start;
char32_t cp = 0;
for (const char16_t* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf16_to_code_point(strtarget, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
}
else {
cp = dr.codepoint;
}
auto er = unicode::code_point_to_utf8(cp);
const char* utf8data = er.code_units.data();
std::memcpy(target, utf8data, er.code_units_size);
target += er.code_units_size;
strtarget = dr.next;
}
return stack::push(L, start, target);
}
static int push(lua_State* L, const char16_t* u16str) {
return push(L, u16str, std::char_traits<char16_t>::length(u16str));
}
static int push(lua_State* L, const char16_t* u16str, std::size_t sz) {
return push(L, u16str, u16str + sz);
}
static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
char sbo[SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_];
// if our max string space is small enough, use SBO
// right off the bat
std::size_t max_possible_code_units = (stre - strb) * 4;
if (max_possible_code_units <= SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
return convert_into(L, sbo, max_possible_code_units, strb, stre);
}
// otherwise, we must manually count/check size
std::size_t needed_size = 0;
for (const char16_t* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf16_to_code_point(strtarget, stre);
auto er = unicode::code_point_to_utf8(dr.codepoint);
needed_size += er.code_units_size;
strtarget = dr.next;
}
if (needed_size < SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
return convert_into(L, sbo, needed_size, strb, stre);
}
std::string u8str("", 0);
u8str.resize(needed_size);
char* target = const_cast<char*>(u8str.data());
return convert_into(L, target, needed_size, strb, stre);
}
};
template <>
struct unqualified_pusher<char16_t*> {
static int push(lua_State* L, const char16_t* str) {
unqualified_pusher<const char16_t*> p {};
(void)p;
return p.push(L, str);
}
static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
unqualified_pusher<const char16_t*> p {};
(void)p;
return p.push(L, strb, stre);
}
static int push(lua_State* L, const char16_t* str, std::size_t len) {
unqualified_pusher<const char16_t*> p {};
(void)p;
return p.push(L, str, len);
}
};
template <>
struct unqualified_pusher<const char32_t*> {
static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) {
char* target = start;
char32_t cp = 0;
for (const char32_t* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf32_to_code_point(strtarget, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
}
else {
cp = dr.codepoint;
}
auto er = unicode::code_point_to_utf8(cp);
const char* data = er.code_units.data();
std::memcpy(target, data, er.code_units_size);
target += er.code_units_size;
strtarget = dr.next;
}
return stack::push(L, start, target);
}
static int push(lua_State* L, const char32_t* u32str) {
return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str));
}
static int push(lua_State* L, const char32_t* u32str, std::size_t sz) {
return push(L, u32str, u32str + sz);
}
static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
char sbo[SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_];
// if our max string space is small enough, use SBO
// right off the bat
std::size_t max_possible_code_units = (stre - strb) * 4;
if (max_possible_code_units <= SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
return convert_into(L, sbo, max_possible_code_units, strb, stre);
}
// otherwise, we must manually count/check size
std::size_t needed_size = 0;
for (const char32_t* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf32_to_code_point(strtarget, stre);
auto er = unicode::code_point_to_utf8(dr.codepoint);
needed_size += er.code_units_size;
strtarget = dr.next;
}
if (needed_size < SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
return convert_into(L, sbo, needed_size, strb, stre);
}
std::string u8str("", 0);
u8str.resize(needed_size);
char* target = const_cast<char*>(u8str.data());
return convert_into(L, target, needed_size, strb, stre);
}
};
template <>
struct unqualified_pusher<char32_t*> {
static int push(lua_State* L, const char32_t* str) {
unqualified_pusher<const char32_t*> p {};
(void)p;
return p.push(L, str);
}
static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
unqualified_pusher<const char32_t*> p {};
(void)p;
return p.push(L, strb, stre);
}
static int push(lua_State* L, const char32_t* str, std::size_t len) {
unqualified_pusher<const char32_t*> p {};
(void)p;
return p.push(L, str, len);
}
};
template <size_t N>
struct unqualified_pusher<wchar_t[N]> {
static int push(lua_State* L, const wchar_t (&str)[N]) {
return push(L, str, std::char_traits<wchar_t>::length(str));
}
static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) {
const wchar_t* str_ptr = static_cast<const wchar_t*>(str);
return stack::push<const wchar_t*>(L, str_ptr, str_ptr + sz);
}
};
template <size_t N>
struct unqualified_pusher<char16_t[N]> {
static int push(lua_State* L, const char16_t (&str)[N]) {
return push(L, str, std::char_traits<char16_t>::length(str));
}
static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) {
const char16_t* str_ptr = static_cast<const char16_t*>(str);
return stack::push<const char16_t*>(L, str_ptr, str_ptr + sz);
}
};
template <size_t N>
struct unqualified_pusher<char32_t[N]> {
static int push(lua_State* L, const char32_t (&str)[N]) {
return push(L, str, std::char_traits<char32_t>::length(str));
}
static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) {
const char32_t* str_ptr = static_cast<const char32_t*>(str);
return stack::push<const char32_t*>(L, str_ptr, str_ptr + sz);
}
};
template <>
struct unqualified_pusher<wchar_t> {
static int push(lua_State* L, wchar_t c) {
const wchar_t str[2] = { c, '\0' };
return stack::push(L, static_cast<const wchar_t*>(str), 1);
}
};
template <>
struct unqualified_pusher<char16_t> {
static int push(lua_State* L, char16_t c) {
const char16_t str[2] = { c, '\0' };
return stack::push(L, static_cast<const char16_t*>(str), 1);
}
};
template <>
struct unqualified_pusher<char32_t> {
static int push(lua_State* L, char32_t c) {
const char32_t str[2] = { c, '\0' };
return stack::push(L, static_cast<const char32_t*>(str), 1);
}
};
template <typename... Args>
struct unqualified_pusher<std::tuple<Args...>> {
template <std::size_t... I, typename T>
static int push(std::index_sequence<I...>, lua_State* L, T&& t) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, static_cast<int>(sizeof...(I)), detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
int pushcount = 0;
(void)detail::swallow { 0, (pushcount += stack::push(L, std::get<I>(std::forward<T>(t))), 0)... };
return pushcount;
}
template <typename T>
static int push(lua_State* L, T&& t) {
return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t));
}
};
template <typename A, typename B>
struct unqualified_pusher<std::pair<A, B>> {
template <typename T>
static int push(lua_State* L, T&& t) {
int pushcount = stack::push(L, std::get<0>(std::forward<T>(t)));
pushcount += stack::push(L, std::get<1>(std::forward<T>(t)));
return pushcount;
}
};
template <typename T>
struct unqualified_pusher<T, std::enable_if_t<meta::is_optional_v<T>>> {
using ValueType = typename meta::unqualified_t<T>::value_type;
template <typename Optional>
static int push(lua_State* L, Optional&& op) {
using QualifiedValueType = meta::conditional_t<std::is_lvalue_reference_v<Optional>, ValueType&, ValueType&&>;
if (!op) {
return stack::push(L, nullopt);
}
return stack::push(L, static_cast<QualifiedValueType>(op.value()));
}
};
template <>
struct unqualified_pusher<nullopt_t> {
static int push(lua_State* L, nullopt_t) {
return stack::push(L, lua_nil);
}
};
template <>
struct unqualified_pusher<std::nullptr_t> {
static int push(lua_State* L, std::nullptr_t) {
return stack::push(L, lua_nil);
}
};
template <>
struct unqualified_pusher<this_state> {
static int push(lua_State*, const this_state&) {
return 0;
}
};
template <>
struct unqualified_pusher<this_main_state> {
static int push(lua_State*, const this_main_state&) {
return 0;
}
};
template <>
struct unqualified_pusher<new_table> {
static int push(lua_State* L, const new_table& nt) {
lua_createtable(L, nt.sequence_hint, nt.map_hint);
return 1;
}
};
template <typename Allocator>
struct unqualified_pusher<basic_bytecode<Allocator>> {
template <typename T>
static int push(lua_State* L, T&& bc, const char* bytecode_name) {
const auto first = bc.data();
const auto bcsize = bc.size();
// pushes either the function, or an error
// if it errors, shit goes south, and people can test that upstream
(void)luaL_loadbuffer(
L, reinterpret_cast<const char*>(first), static_cast<std::size_t>(bcsize * (sizeof(*first) / sizeof(const char))), bytecode_name);
return 1;
}
template <typename T>
static int push(lua_State* L, T&& bc) {
return push(L, std::forward<bc>(bc), "bytecode");
}
};
#if SOL_IS_ON(SOL_STD_VARIANT_I_)
namespace stack_detail {
struct push_function {
lua_State* L;
push_function(lua_State* L) : L(L) {
}
template <typename T>
int operator()(T&& value) const {
return stack::push<T>(L, std::forward<T>(value));
}
};
} // namespace stack_detail
template <typename... Tn>
struct unqualified_pusher<std::variant<Tn...>> {
static int push(lua_State* L, const std::variant<Tn...>& v) {
return std::visit(stack_detail::push_function(L), v);
}
static int push(lua_State* L, std::variant<Tn...>&& v) {
return std::visit(stack_detail::push_function(L), std::move(v));
}
};
#endif // Variant because Clang is terrible
}} // namespace sol::stack
// end of sol/stack_push.hpp
// beginning of sol/stack_pop.hpp
#include <utility>
#include <tuple>
namespace sol {
namespace stack {
template <typename T, typename>
struct popper {
inline static decltype(auto) pop(lua_State* L) {
if constexpr (is_stack_based_v<meta::unqualified_t<T>>) {
static_assert(!is_stack_based_v<meta::unqualified_t<T>>,
"You cannot pop something that lives solely on the stack: it will not remain on the stack when popped and thusly will go out of "
"scope!");
}
else {
record tracking{};
decltype(auto) r = get<T>(L, -lua_size<T>::value, tracking);
lua_pop(L, tracking.used);
return r;
}
}
};
}
} // namespace sol::stack
// end of sol/stack_pop.hpp
// beginning of sol/stack_field.hpp
namespace sol { namespace stack {
template <typename T, bool global, bool raw, typename>
struct field_getter {
static constexpr int default_table_index = meta::conditional_t < meta::is_c_str_v<T>
#if SOL_LUA_VESION_I_ >= 503
|| (std::is_integral_v<T> && !std::is_same_v<T, bool>)
#endif // integer global keys 5.3 or better
|| (raw && std::is_void_v<std::remove_pointer_t<T>>),
std::integral_constant<int, -1>, std::integral_constant<int, -2> > ::value;
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = default_table_index) {
if constexpr (std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, override_value_t> || std::is_same_v<T, create_if_nil_t>) {
(void)L;
(void)key;
(void)tableindex;
}
else if constexpr (std::is_same_v<T, env_key_t>) {
(void)key;
#if SOL_LUA_VESION_I_ < 502
// Use lua_setfenv
lua_getfenv(L, tableindex);
#else
// Use upvalues as explained in Lua 5.2 and beyond's manual
if (lua_getupvalue(L, tableindex, 1) == nullptr) {
push(L, lua_nil);
}
#endif
}
else if constexpr (std::is_same_v<T, metatable_key_t>) {
(void)key;
if (lua_getmetatable(L, tableindex) == 0)
push(L, lua_nil);
}
else if constexpr (raw) {
if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
lua_rawgeti(L, tableindex, static_cast<lua_Integer>(key));
}
#if SOL_LUA_VESION_I_ >= 502
else if constexpr (std::is_void_v<std::remove_pointer_t<T>>) {
lua_rawgetp(L, tableindex, key);
}
#endif // Lua 5.2.x+
else {
push(L, std::forward<Key>(key));
lua_rawget(L, tableindex);
}
}
else {
if constexpr (meta::is_c_str_v<T>) {
if constexpr (global) {
(void)tableindex;
lua_getglobal(L, &key[0]);
}
else {
lua_getfield(L, tableindex, &key[0]);
}
}
#if SOL_LUA_VESION_I_ >= 503
else if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
lua_geti(L, tableindex, static_cast<lua_Integer>(key));
}
#endif // Lua 5.3.x+
else {
push(L, std::forward<Key>(key));
lua_gettable(L, tableindex);
}
}
}
};
template <typename... Args, bool b, bool raw, typename C>
struct field_getter<std::tuple<Args...>, b, raw, C> {
template <std::size_t... I, typename Keys>
void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex) {
get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex);
void(detail::swallow { (get_field<false, raw>(L, std::get<I>(std::forward<Keys>(keys))), 0)... });
reference saved(L, -1);
lua_pop(L, static_cast<int>(sizeof...(I)));
saved.push();
}
template <typename Keys>
void get(lua_State* L, Keys&& keys) {
apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), lua_absindex(L, -1));
}
template <typename Keys>
void get(lua_State* L, Keys&& keys, int tableindex) {
apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), tableindex);
}
};
template <typename A, typename B, bool b, bool raw, typename C>
struct field_getter<std::pair<A, B>, b, raw, C> {
template <typename Keys>
void get(lua_State* L, Keys&& keys, int tableindex) {
get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex);
get_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)));
reference saved(L, -1);
lua_pop(L, static_cast<int>(2));
saved.push();
}
template <typename Keys>
void get(lua_State* L, Keys&& keys) {
get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)));
get_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)));
reference saved(L, -1);
lua_pop(L, static_cast<int>(2));
saved.push();
}
};
template <typename T, bool global, bool raw, typename>
struct field_setter {
static constexpr int default_table_index
= meta::conditional_t < (meta::is_c_str_v<T> || meta::is_string_of_v<T, char>) || (std::is_integral_v<T> && !std::is_same_v<T, bool>)
|| (std::is_integral_v<T> && !std::is_same_v<T, bool>) || (raw && std::is_void_v<std::remove_pointer_t<T>>),
std::integral_constant<int, -2>, std::integral_constant<int, -3> > ::value;
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = default_table_index) {
if constexpr (std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, override_value_t>) {
(void)L;
(void)key;
(void)value;
(void)tableindex;
}
else if constexpr (std::is_same_v<T, metatable_key_t>) {
(void)key;
push(L, std::forward<Value>(value));
lua_setmetatable(L, tableindex);
}
else if constexpr (raw) {
if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
push(L, std::forward<Value>(value));
lua_rawseti(L, tableindex, static_cast<lua_Integer>(key));
}
#if SOL_LUA_VESION_I_ >= 502
else if constexpr (std::is_void_v<std::remove_pointer_t<T>>) {
push(L, std::forward<Value>(value));
lua_rawsetp(L, tableindex, std::forward<Key>(key));
}
#endif // Lua 5.2.x
else {
push(L, std::forward<Key>(key));
push(L, std::forward<Value>(value));
lua_rawset(L, tableindex);
}
}
else {
if constexpr (meta::is_c_str_v<T> || meta::is_string_of_v<T, char>) {
if constexpr (global) {
push(L, std::forward<Value>(value));
lua_setglobal(L, &key[0]);
(void)tableindex;
}
else {
push(L, std::forward<Value>(value));
lua_setfield(L, tableindex, &key[0]);
}
}
#if SOL_LUA_VESION_I_ >= 503
else if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
push(L, std::forward<Value>(value));
lua_seti(L, tableindex, static_cast<lua_Integer>(key));
}
#endif // Lua 5.3.x
else {
push(L, std::forward<Key>(key));
push(L, std::forward<Value>(value));
lua_settable(L, tableindex);
}
}
}
};
template <typename... Args, bool b, bool raw, typename C>
struct field_setter<std::tuple<Args...>, b, raw, C> {
template <bool g, std::size_t I, typename Keys, typename Value>
void apply(std::index_sequence<I>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
I < 1 ? set_field<g, raw>(L, std::get<I>(std::forward<Keys>(keys)), std::forward<Value>(value), tableindex)
: set_field<g, raw>(L, std::get<I>(std::forward<Keys>(keys)), std::forward<Value>(value));
}
template <bool g, std::size_t I0, std::size_t I1, std::size_t... I, typename Keys, typename Value>
void apply(std::index_sequence<I0, I1, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
I0 < 1 ? get_field<g, raw>(L, std::get<I0>(std::forward<Keys>(keys)), tableindex)
: get_field<g, raw>(L, std::get<I0>(std::forward<Keys>(keys)), -1);
apply<false>(std::index_sequence<I1, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), -1);
}
template <bool g, std::size_t I0, std::size_t... I, typename Keys, typename Value>
void top_apply(std::index_sequence<I0, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
apply<g>(std::index_sequence<I0, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
lua_pop(L, static_cast<int>(sizeof...(I)));
}
template <typename Keys, typename Value>
void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3) {
top_apply<b>(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
}
};
template <typename A, typename B, bool b, bool raw, typename C>
struct field_setter<std::pair<A, B>, b, raw, C> {
template <typename Keys, typename Value>
void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1) {
get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex);
set_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)), std::forward<Value>(value), lua_gettop(L));
lua_pop(L, 1);
}
};
}} // namespace sol::stack
// end of sol/stack_field.hpp
// beginning of sol/stack_probe.hpp
namespace sol {
namespace stack {
template <typename T, typename P, bool b, bool raw, typename>
struct probe_field_getter {
template <typename Key>
probe get(lua_State* L, Key&& key, int tableindex = -2) {
if constexpr(!b) {
if (!maybe_indexable(L, tableindex)) {
return probe(false, 0);
}
}
get_field<b, raw>(L, std::forward<Key>(key), tableindex);
return probe(check<P>(L), 1);
}
};
template <typename A, typename B, typename P, bool b, bool raw, typename C>
struct probe_field_getter<std::pair<A, B>, P, b, raw, C> {
template <typename Keys>
probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
if (!b && !maybe_indexable(L, tableindex)) {
return probe(false, 0);
}
get_field<b, raw>(L, std::get<0>(keys), tableindex);
if (!maybe_indexable(L)) {
return probe(false, 1);
}
get_field<false, raw>(L, std::get<1>(keys), tableindex);
return probe(check<P>(L), 2);
}
};
template <typename... Args, typename P, bool b, bool raw, typename C>
struct probe_field_getter<std::tuple<Args...>, P, b, raw, C> {
template <std::size_t I, typename Keys>
probe apply(std::index_sequence<I>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
get_field<(I<1) && b, raw>(L, std::get<I>(keys), tableindex);
return probe(check<P>(L), sofar);
}
template <std::size_t I, std::size_t I1, std::size_t... In, typename Keys>
probe apply(std::index_sequence<I, I1, In...>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex);
if (!maybe_indexable(L)) {
return probe(false, sofar);
}
return apply(std::index_sequence<I1, In...>(), sofar + 1, L, std::forward<Keys>(keys), -1);
}
template <typename Keys>
probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
if constexpr (!b) {
if (!maybe_indexable(L, tableindex)) {
return probe(false, 0);
}
return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex);
}
else {
return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex);
}
}
};
}
} // namespace sol::stack
// end of sol/stack_probe.hpp
#include <cstring>
#include <array>
namespace sol {
namespace detail {
using typical_chunk_name_t = char[SOL_ID_SIZE_I_];
using typical_file_chunk_name_t = char[SOL_FILE_ID_SIZE_I_];
inline const std::string& default_chunk_name() {
static const std::string name = "";
return name;
}
template <std::size_t N>
const char* make_chunk_name(const string_view& code, const std::string& chunkname, char (&basechunkname)[N]) {
if (chunkname.empty()) {
auto it = code.cbegin();
auto e = code.cend();
std::size_t i = 0;
static const std::size_t n = N - 4;
for (i = 0; i < n && it != e; ++i, ++it) {
basechunkname[i] = *it;
}
if (it != e) {
for (std::size_t c = 0; c < 3; ++i, ++c) {
basechunkname[i] = '.';
}
}
basechunkname[i] = '\0';
return &basechunkname[0];
}
else {
return chunkname.c_str();
}
}
inline void clear_entries(stack_reference r) {
stack::push(r.lua_state(), lua_nil);
while (lua_next(r.lua_state(), -2)) {
absolute_index key(r.lua_state(), -2);
auto pn = stack::pop_n(r.lua_state(), 1);
stack::set_field<false, true>(r.lua_state(), key, lua_nil, r.stack_index());
}
}
inline void clear_entries(const reference& registry_reference) {
auto pp = stack::push_pop(registry_reference);
stack_reference ref(registry_reference.lua_state(), -1);
clear_entries(ref);
}
} // namespace detail
namespace stack {
namespace stack_detail {
template <typename T>
inline int push_as_upvalues(lua_State* L, T& item) {
typedef std::decay_t<T> TValue;
static const std::size_t itemsize = sizeof(TValue);
static const std::size_t voidsize = sizeof(void*);
static const std::size_t voidsizem1 = voidsize - 1;
static const std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
typedef std::array<void*, data_t_count> data_t;
data_t data { {} };
std::memcpy(&data[0], std::addressof(item), itemsize);
int pushcount = 0;
for (const auto& v : data) {
lua_pushlightuserdata(L, v);
pushcount += 1;
}
return pushcount;
}
template <typename T>
inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 2) {
static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
typedef std::array<void*, data_t_count> data_t;
data_t voiddata { {} };
for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) {
voiddata[i] = lua_touserdata(L, upvalue_index(index++));
}
return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
}
template <typename T>
inline std::pair<T, int> get_as_upvalues_using_function(lua_State* L, int function_index = -1) {
static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
typedef std::array<void*, data_t_count> data_t;
function_index = lua_absindex(L, function_index);
int index = 0;
data_t voiddata { {} };
for (std::size_t d = 0; d < sizeof(T); d += sizeof(void*)) {
// first upvalue is nullptr to respect environment shenanigans
// So +2 instead of +1
const char* upvalue_name = lua_getupvalue(L, function_index, index + 2);
if (upvalue_name == nullptr) {
// We should freak out here...
break;
}
voiddata[index] = lua_touserdata(L, -1);
++index;
}
lua_pop(L, index);
return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
}
template <typename Fx, typename... Args>
static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, record&, Fx&& fx, Args&&... args) {
return std::forward<Fx>(fx)(std::forward<Args>(args)...);
}
template <typename Fx, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename... FxArgs>
static decltype(auto) eval(
types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L, int start, record& tracking, Fx&& fx, FxArgs&&... fxargs) {
return eval(types<Args...>(),
std::index_sequence<Is...>(),
L,
start,
tracking,
std::forward<Fx>(fx),
std::forward<FxArgs>(fxargs)...,
stack_detail::unchecked_get<Arg>(L, start + tracking.used, tracking));
}
template <bool checkargs = detail::default_safe_function_calls, std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
static_assert(meta::all<meta::is_not_move_only<Args>...>::value,
"One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take "
"a reference and std::move it manually if this was your intention.");
if constexpr (checkargs) {
argument_handler<types<R, Args...>> handler {};
multi_check<Args...>(L, start, handler);
}
record tracking {};
if constexpr (std::is_void_v<R>) {
eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
else {
return eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
}
} // namespace stack_detail
template <typename T>
int set_ref(lua_State* L, T&& arg, int tableindex = -2) {
push(L, std::forward<T>(arg));
return luaL_ref(L, tableindex);
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
using args_indices = std::make_index_sequence<sizeof...(Args)>;
if constexpr (std::is_void_v<R>) {
stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
else {
return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
if constexpr (std::is_void_v<R>) {
call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
else {
return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
using expected_count_t = meta::count_for_pack<lua_size, Args...>;
if constexpr (std::is_void_v<R>) {
call<check_args>(tr,
ta,
L,
(std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
std::forward<Fx>(fx),
std::forward<FxArgs>(args)...);
}
else {
return call<check_args>(tr,
ta,
L,
(std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
std::forward<Fx>(fx),
std::forward<FxArgs>(args)...);
}
}
template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Ret0, typename... Ret, typename... Args,
typename Fx, typename... FxArgs>
inline int call_into_lua(types<Ret0, Ret...> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
if constexpr (std::is_void_v<Ret0>) {
call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
if constexpr (clean_stack) {
lua_settop(L, 0);
}
return 0;
}
else {
(void)tr;
decltype(auto) r
= call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
using R = meta::unqualified_t<decltype(r)>;
using is_stack = meta::any<is_stack_based<R>, std::is_same<R, absolute_index>, std::is_same<R, ref_index>, std::is_same<R, raw_index>>;
if constexpr (clean_stack && !is_stack::value) {
lua_settop(L, 0);
}
return push_reference(L, std::forward<decltype(r)>(r));
}
}
template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... FxArgs>
inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
using traits_type = lua_bind_traits<meta::unqualified_t<Fx>>;
using args_list = typename traits_type::args_list;
using returns_list = typename traits_type::returns_list;
return call_into_lua<check_args, clean_stack>(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
}
inline call_syntax get_call_syntax(lua_State* L, const string_view& key, int index) {
if (lua_gettop(L) < 1) {
return call_syntax::dot;
}
luaL_getmetatable(L, key.data());
auto pn = pop_n(L, 1);
if (lua_compare(L, -1, index, LUA_OPEQ) != 1) {
return call_syntax::dot;
}
return call_syntax::colon;
}
inline void script(
lua_State* L, lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void script(
lua_State* L, const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void script_file(lua_State* L, const std::string& filename, load_mode mode = load_mode::any) {
if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void luajit_exception_handler(lua_State* L, int (*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) {
#if SOL_IS_ON(SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_)
if (L == nullptr) {
return;
}
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushlightuserdata(L, (void*)handler);
auto pn = pop_n(L, 1);
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
#else
(void)L;
(void)handler;
#endif
}
inline void luajit_exception_off(lua_State* L) {
#if SOL_IS_ON(SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_)
if (L == nullptr) {
return;
}
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
#else
(void)L;
#endif
}
} // namespace stack
} // namespace sol
// end of sol/stack.hpp
// beginning of sol/object.hpp
// beginning of sol/make_reference.hpp
namespace sol {
template <typename R = reference, bool should_pop = !is_stack_based_v<R>, typename T>
R make_reference(lua_State* L, T&& value) {
int backpedal = stack::push(L, std::forward<T>(value));
R r = stack::get<R>(L, -backpedal);
if (should_pop) {
lua_pop(L, backpedal);
}
return r;
}
template <typename T, typename R = reference, bool should_pop = !is_stack_based_v<R>, typename... Args>
R make_reference(lua_State* L, Args&&... args) {
int backpedal = stack::push<T>(L, std::forward<Args>(args)...);
R r = stack::get<R>(L, -backpedal);
if (should_pop) {
lua_pop(L, backpedal);
}
return r;
}
template <typename R = reference, bool should_pop = !is_stack_based_v<R>, typename T>
R make_reference_userdata(lua_State* L, T&& value) {
int backpedal = stack::push_userdata(L, std::forward<T>(value));
R r = stack::get<R>(L, -backpedal);
if (should_pop) {
lua_pop(L, backpedal);
}
return r;
}
template <typename T, typename R = reference, bool should_pop = !is_stack_based_v<R>, typename... Args>
R make_reference_userdata(lua_State* L, Args&&... args) {
int backpedal = stack::push_userdata<T>(L, std::forward<Args>(args)...);
R r = stack::get<R>(L, -backpedal);
if (should_pop) {
lua_pop(L, backpedal);
}
return r;
}
} // namespace sol
// end of sol/make_reference.hpp
// beginning of sol/object_base.hpp
namespace sol {
template <typename ref_t>
class basic_object_base : public ref_t {
private:
using base_t = ref_t;
template <typename T>
decltype(auto) as_stack(std::true_type) const {
return stack::get<T>(base_t::lua_state(), base_t::stack_index());
}
template <typename T>
decltype(auto) as_stack(std::false_type) const {
base_t::push();
return stack::pop<T>(base_t::lua_state());
}
template <typename T>
bool is_stack(std::true_type) const {
return stack::check<T>(base_t::lua_state(), base_t::stack_index(), no_panic);
}
template <typename T>
bool is_stack(std::false_type) const {
int r = base_t::registry_index();
if (r == LUA_REFNIL)
return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
if (r == LUA_NOREF)
return false;
auto pp = stack::push_pop(*this);
return stack::check<T>(base_t::lua_state(), -1, no_panic);
}
public:
basic_object_base() noexcept = default;
basic_object_base(const basic_object_base&) = default;
basic_object_base(basic_object_base&&) = default;
basic_object_base& operator=(const basic_object_base&) = default;
basic_object_base& operator=(basic_object_base&&) = default;
template <typename T, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object_base>>> = meta::enabler>
basic_object_base(T&& arg, Args&&... args)
: base_t(std::forward<T>(arg), std::forward<Args>(args)...) {
}
template <typename T>
decltype(auto) as() const {
return as_stack<T>(is_stack_based<base_t>());
}
template <typename T>
bool is() const {
return is_stack<T>(is_stack_based<base_t>());
}
};
} // namespace sol
// end of sol/object_base.hpp
namespace sol {
template <typename base_type>
class basic_object : public basic_object_base<base_type> {
private:
typedef basic_object_base<base_type> base_t;
template <bool invert_and_pop = false>
basic_object(std::integral_constant<bool, invert_and_pop>, lua_State* L, int index = -1) noexcept
: base_t(L, index) {
if (invert_and_pop) {
lua_pop(L, -index);
}
}
protected:
basic_object(detail::no_safety_tag, lua_nil_t n) : base_t(n) {
}
basic_object(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) {
}
basic_object(lua_State* L, detail::global_tag t) : base_t(L, t) {
}
basic_object(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) {
}
template <typename T,
meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>,
meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_object(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_object(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) {
}
public:
basic_object() noexcept = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_object(T&& r)
: base_t(std::forward<T>(r)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_object(lua_State* L, T&& r)
: base_t(L, std::forward<T>(r)) {
}
basic_object(lua_nil_t r)
: base_t(r) {
}
basic_object(const basic_object&) = default;
basic_object(basic_object&&) = default;
basic_object(const stack_reference& r) noexcept
: basic_object(r.lua_state(), r.stack_index()) {
}
basic_object(stack_reference&& r) noexcept
: basic_object(r.lua_state(), r.stack_index()) {
}
template <typename Super>
basic_object(const proxy_base<Super>& r) noexcept
: basic_object(r.operator basic_object()) {
}
template <typename Super>
basic_object(proxy_base<Super>&& r) noexcept
: basic_object(r.operator basic_object()) {
}
basic_object(lua_State* L, lua_nil_t r) noexcept
: base_t(L, r) {
}
basic_object(lua_State* L, int index = -1) noexcept
: base_t(L, index) {
}
basic_object(lua_State* L, absolute_index index) noexcept
: base_t(L, index) {
}
basic_object(lua_State* L, raw_index index) noexcept
: base_t(L, index) {
}
basic_object(lua_State* L, ref_index index) noexcept
: base_t(L, index) {
}
template <typename T, typename... Args>
basic_object(lua_State* L, in_place_type_t<T>, Args&&... args) noexcept
: basic_object(std::integral_constant<bool, !is_stack_based<base_t>::value>(), L, -stack::push<T>(L, std::forward<Args>(args)...)) {
}
template <typename T, typename... Args>
basic_object(lua_State* L, in_place_t, T&& arg, Args&&... args) noexcept
: basic_object(L, in_place_type<T>, std::forward<T>(arg), std::forward<Args>(args)...) {
}
basic_object& operator=(const basic_object&) = default;
basic_object& operator=(basic_object&&) = default;
basic_object& operator=(const base_type& b) {
base_t::operator=(b);
return *this;
}
basic_object& operator=(base_type&& b) {
base_t::operator=(std::move(b));
return *this;
}
template <typename Super>
basic_object& operator=(const proxy_base<Super>& r) {
this->operator=(r.operator basic_object());
return *this;
}
template <typename Super>
basic_object& operator=(proxy_base<Super>&& r) {
this->operator=(r.operator basic_object());
return *this;
}
};
template <typename T>
object make_object(lua_State* L, T&& value) {
return make_reference<object, true>(L, std::forward<T>(value));
}
template <typename T, typename... Args>
object make_object(lua_State* L, Args&&... args) {
return make_reference<T, object, true>(L, std::forward<Args>(args)...);
}
template <typename T>
object make_object_userdata(lua_State* L, T&& value) {
return make_reference_userdata<object, true>(L, std::forward<T>(value));
}
template <typename T, typename... Args>
object make_object_userdata(lua_State* L, Args&&... args) {
return make_reference_userdata<T, object, true>(L, std::forward<Args>(args)...);
}
} // namespace sol
// end of sol/object.hpp
// beginning of sol/function.hpp
// beginning of sol/unsafe_function.hpp
// beginning of sol/function_result.hpp
// beginning of sol/protected_function_result.hpp
// beginning of sol/proxy_base.hpp
namespace sol {
struct proxy_base_tag {};
namespace detail {
template <typename T>
using proxy_key_t = meta::conditional_t<meta::is_specialization_of_v<meta::unqualified_t<T>, std::tuple>, T,
std::tuple<meta::conditional_t<std::is_array_v<meta::unqualified_t<T>>, std::remove_reference_t<T>&, meta::unqualified_t<T>>>>;
}
template <typename Super>
struct proxy_base : proxy_base_tag {
operator std::string() const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<std::string>();
}
template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, is_proxy_primitive<meta::unqualified_t<T>>> = meta::enabler>
operator T() const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<T>();
}
template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, meta::neg<is_proxy_primitive<meta::unqualified_t<T>>>> = meta::enabler>
operator T&() const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<T&>();
}
lua_State* lua_state() const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.lua_state();
}
};
} // namespace sol
// end of sol/proxy_base.hpp
// beginning of sol/stack_iterator.hpp
#include <limits>
#include <iterator>
namespace sol {
template <typename proxy_t, bool is_const>
struct stack_iterator {
typedef meta::conditional_t<is_const, const proxy_t, proxy_t> reference;
typedef meta::conditional_t<is_const, const proxy_t*, proxy_t*> pointer;
typedef proxy_t value_type;
typedef std::ptrdiff_t difference_type;
typedef std::random_access_iterator_tag iterator_category;
lua_State* L;
int index;
int stacktop;
proxy_t sp;
stack_iterator()
: L(nullptr), index((std::numeric_limits<int>::max)()), stacktop((std::numeric_limits<int>::max)()), sp() {
}
stack_iterator(const stack_iterator<proxy_t, true>& r)
: L(r.L), index(r.index), stacktop(r.stacktop), sp(r.sp) {
}
stack_iterator(lua_State* luastate, int idx, int topidx)
: L(luastate), index(idx), stacktop(topidx), sp(luastate, idx) {
}
reference operator*() {
return proxy_t(L, index);
}
reference operator*() const {
return proxy_t(L, index);
}
pointer operator->() {
sp = proxy_t(L, index);
return &sp;
}
pointer operator->() const {
const_cast<proxy_t&>(sp) = proxy_t(L, index);
return &sp;
}
stack_iterator& operator++() {
++index;
return *this;
}
stack_iterator operator++(int) {
auto r = *this;
this->operator++();
return r;
}
stack_iterator& operator--() {
--index;
return *this;
}
stack_iterator operator--(int) {
auto r = *this;
this->operator--();
return r;
}
stack_iterator& operator+=(difference_type idx) {
index += static_cast<int>(idx);
return *this;
}
stack_iterator& operator-=(difference_type idx) {
index -= static_cast<int>(idx);
return *this;
}
difference_type operator-(const stack_iterator& r) const {
return index - r.index;
}
stack_iterator operator+(difference_type idx) const {
stack_iterator r = *this;
r += idx;
return r;
}
reference operator[](difference_type idx) const {
return proxy_t(L, index + static_cast<int>(idx));
}
bool operator==(const stack_iterator& r) const {
if (stacktop == (std::numeric_limits<int>::max)()) {
return r.index == r.stacktop;
}
else if (r.stacktop == (std::numeric_limits<int>::max)()) {
return index == stacktop;
}
return index == r.index;
}
bool operator!=(const stack_iterator& r) const {
return !(this->operator==(r));
}
bool operator<(const stack_iterator& r) const {
return index < r.index;
}
bool operator>(const stack_iterator& r) const {
return index > r.index;
}
bool operator<=(const stack_iterator& r) const {
return index <= r.index;
}
bool operator>=(const stack_iterator& r) const {
return index >= r.index;
}
};
template <typename proxy_t, bool is_const>
inline stack_iterator<proxy_t, is_const> operator+(typename stack_iterator<proxy_t, is_const>::difference_type n, const stack_iterator<proxy_t, is_const>& r) {
return r + n;
}
} // namespace sol
// end of sol/stack_iterator.hpp
// beginning of sol/stack_proxy.hpp
// beginning of sol/stack_proxy_base.hpp
namespace sol {
struct stack_proxy_base : public proxy_base<stack_proxy_base> {
private:
lua_State* L;
int index;
public:
stack_proxy_base()
: L(nullptr), index(0) {
}
stack_proxy_base(lua_State* L, int index)
: L(L), index(index) {
}
template <typename T>
decltype(auto) get() const {
return stack::get<T>(L, stack_index());
}
template <typename T>
bool is() const {
return stack::check<T>(L, stack_index());
}
template <typename T>
decltype(auto) as() const {
return get<T>();
}
type get_type() const noexcept {
return type_of(lua_state(), stack_index());
}
int push() const {
return push(L);
}
int push(lua_State* Ls) const {
lua_pushvalue(Ls, index);
return 1;
}
lua_State* lua_state() const {
return L;
}
int stack_index() const {
return index;
}
};
namespace stack {
template <>
struct unqualified_getter<stack_proxy_base> {
static stack_proxy_base get(lua_State* L, int index = -1) {
return stack_proxy_base(L, index);
}
};
template <>
struct unqualified_pusher<stack_proxy_base> {
static int push(lua_State*, const stack_proxy_base& ref) {
return ref.push();
}
};
} // namespace stack
} // namespace sol
// end of sol/stack_proxy_base.hpp
namespace sol {
struct stack_proxy : public stack_proxy_base {
public:
stack_proxy() : stack_proxy_base() {
}
stack_proxy(lua_State* L, int index) : stack_proxy_base(L, index) {
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args);
template <typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
};
namespace stack {
template <>
struct unqualified_getter<stack_proxy> {
static stack_proxy get(lua_State* L, int index, record& tracking) {
tracking.use(0);
return stack_proxy(L, index);
}
};
template <>
struct unqualified_pusher<stack_proxy> {
static int push(lua_State*, const stack_proxy& ref) {
return ref.push();
}
};
} // namespace stack
} // namespace sol
// end of sol/stack_proxy.hpp
#include <cstdint>
namespace sol {
struct protected_function_result : public proxy_base<protected_function_result> {
private:
lua_State* L;
int index;
int returncount;
int popcount;
call_status err;
public:
typedef stack_proxy reference_type;
typedef stack_proxy value_type;
typedef stack_proxy* pointer;
typedef std::ptrdiff_t difference_type;
typedef std::size_t size_type;
typedef stack_iterator<stack_proxy, false> iterator;
typedef stack_iterator<stack_proxy, true> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
protected_function_result() noexcept = default;
protected_function_result(lua_State* Ls, int idx = -1, int retnum = 0, int popped = 0, call_status pferr = call_status::ok) noexcept
: L(Ls), index(idx), returncount(retnum), popcount(popped), err(pferr) {
}
// We do not want anyone to copy these around willy-nilly
// Will likely break people, but also will probably get rid of quiet bugs that have
// been lurking. (E.g., Vanilla Lua will just quietly discard over-pops and under-pops:
// LuaJIT and other Lua engines will implode and segfault at random later times.)
protected_function_result(const protected_function_result&) = delete;
protected_function_result& operator=(const protected_function_result&) = delete;
protected_function_result(protected_function_result&& o) noexcept
: L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
}
protected_function_result& operator=(protected_function_result&& o) noexcept {
L = o.L;
index = o.index;
returncount = o.returncount;
popcount = o.popcount;
err = o.err;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
return *this;
}
protected_function_result(const unsafe_function_result& o) = delete;
protected_function_result& operator=(const unsafe_function_result& o) = delete;
protected_function_result(unsafe_function_result&& o) noexcept;
protected_function_result& operator=(unsafe_function_result&& o) noexcept;
call_status status() const noexcept {
return err;
}
bool valid() const noexcept {
return status() == call_status::ok || status() == call_status::yielded;
}
template <typename T>
decltype(auto) get(int index_offset = 0) const {
using UT = meta::unqualified_t<T>;
int target = index + index_offset;
if constexpr (meta::is_optional_v<UT>) {
using ValueType = typename UT::value_type;
if constexpr (std::is_same_v<ValueType, error>) {
if (valid()) {
return UT();
}
return UT(error(detail::direct_error, stack::get<std::string>(L, target)));
}
else {
if (!valid()) {
return UT();
}
return stack::get<UT>(L, target);
}
}
else {
if constexpr (std::is_same_v<T, error>) {
#if SOL_IS_ON(SOL_SAFE_PROXIES_I_)
if (valid()) {
type t = type_of(L, target);
type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is an error)");
}
#endif // Check Argument Safety
return error(detail::direct_error, stack::get<std::string>(L, target));
}
else {
#if SOL_IS_ON(SOL_SAFE_PROXIES_I_)
if (!valid()) {
type t = type_of(L, target);
type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is not an error)");
}
#endif // Check Argument Safety
return stack::get<T>(L, target);
}
}
}
type get_type(int index_offset = 0) const noexcept {
return type_of(L, index + static_cast<int>(index_offset));
}
stack_proxy operator[](difference_type index_offset) const {
return stack_proxy(L, index + static_cast<int>(index_offset));
}
iterator begin() {
return iterator(L, index, stack_index() + return_count());
}
iterator end() {
return iterator(L, stack_index() + return_count(), stack_index() + return_count());
}
const_iterator begin() const {
return const_iterator(L, index, stack_index() + return_count());
}
const_iterator end() const {
return const_iterator(L, stack_index() + return_count(), stack_index() + return_count());
}
const_iterator cbegin() const {
return begin();
}
const_iterator cend() const {
return end();
}
reverse_iterator rbegin() {
return std::reverse_iterator<iterator>(begin());
}
reverse_iterator rend() {
return std::reverse_iterator<iterator>(end());
}
const_reverse_iterator rbegin() const {
return std::reverse_iterator<const_iterator>(begin());
}
const_reverse_iterator rend() const {
return std::reverse_iterator<const_iterator>(end());
}
const_reverse_iterator crbegin() const {
return std::reverse_iterator<const_iterator>(cbegin());
}
const_reverse_iterator crend() const {
return std::reverse_iterator<const_iterator>(cend());
}
lua_State* lua_state() const noexcept {
return L;
};
int stack_index() const noexcept {
return index;
};
int return_count() const noexcept {
return returncount;
};
int pop_count() const noexcept {
return popcount;
};
void abandon() noexcept {
// L = nullptr;
index = 0;
returncount = 0;
popcount = 0;
err = call_status::runtime;
}
~protected_function_result() {
stack::remove(L, index, popcount);
}
};
namespace stack {
template <>
struct unqualified_pusher<protected_function_result> {
static int push(lua_State* L, const protected_function_result& pfr) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, static_cast<int>(pfr.pop_count()), detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
int p = 0;
for (int i = 0; i < pfr.pop_count(); ++i) {
lua_pushvalue(L, i + pfr.stack_index());
++p;
}
return p;
}
};
} // namespace stack
} // namespace sol
// end of sol/protected_function_result.hpp
// beginning of sol/unsafe_function_result.hpp
#include <cstdint>
namespace sol {
struct unsafe_function_result : public proxy_base<unsafe_function_result> {
private:
lua_State* L;
int index;
int returncount;
public:
typedef stack_proxy reference_type;
typedef stack_proxy value_type;
typedef stack_proxy* pointer;
typedef std::ptrdiff_t difference_type;
typedef std::size_t size_type;
typedef stack_iterator<stack_proxy, false> iterator;
typedef stack_iterator<stack_proxy, true> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
unsafe_function_result() noexcept = default;
unsafe_function_result(lua_State* Ls, int idx = -1, int retnum = 0) noexcept : L(Ls), index(idx), returncount(retnum) {
}
// We do not want anyone to copy these around willy-nilly
// Will likely break people, but also will probably get rid of quiet bugs that have
// been lurking. (E.g., Vanilla Lua will just quietly discard over-pops and under-pops:
// LuaJIT and other Lua engines will implode and segfault at random later times.)
unsafe_function_result(const unsafe_function_result&) = delete;
unsafe_function_result& operator=(const unsafe_function_result&) = delete;
unsafe_function_result(unsafe_function_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.abandon();
}
unsafe_function_result& operator=(unsafe_function_result&& o) noexcept {
L = o.L;
index = o.index;
returncount = o.returncount;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.abandon();
return *this;
}
unsafe_function_result(const protected_function_result& o) = delete;
unsafe_function_result& operator=(const protected_function_result& o) = delete;
unsafe_function_result(protected_function_result&& o) noexcept;
unsafe_function_result& operator=(protected_function_result&& o) noexcept;
template <typename T>
decltype(auto) get(difference_type index_offset = 0) const {
return stack::get<T>(L, index + static_cast<int>(index_offset));
}
type get_type(difference_type index_offset = 0) const noexcept {
return type_of(L, index + static_cast<int>(index_offset));
}
stack_proxy operator[](difference_type index_offset) const {
return stack_proxy(L, index + static_cast<int>(index_offset));
}
iterator begin() {
return iterator(L, index, stack_index() + return_count());
}
iterator end() {
return iterator(L, stack_index() + return_count(), stack_index() + return_count());
}
const_iterator begin() const {
return const_iterator(L, index, stack_index() + return_count());
}
const_iterator end() const {
return const_iterator(L, stack_index() + return_count(), stack_index() + return_count());
}
const_iterator cbegin() const {
return begin();
}
const_iterator cend() const {
return end();
}
reverse_iterator rbegin() {
return std::reverse_iterator<iterator>(begin());
}
reverse_iterator rend() {
return std::reverse_iterator<iterator>(end());
}
const_reverse_iterator rbegin() const {
return std::reverse_iterator<const_iterator>(begin());
}
const_reverse_iterator rend() const {
return std::reverse_iterator<const_iterator>(end());
}
const_reverse_iterator crbegin() const {
return std::reverse_iterator<const_iterator>(cbegin());
}
const_reverse_iterator crend() const {
return std::reverse_iterator<const_iterator>(cend());
}
call_status status() const noexcept {
return call_status::ok;
}
bool valid() const noexcept {
return status() == call_status::ok || status() == call_status::yielded;
}
lua_State* lua_state() const {
return L;
};
int stack_index() const {
return index;
};
int return_count() const {
return returncount;
};
void abandon() noexcept {
// L = nullptr;
index = 0;
returncount = 0;
}
~unsafe_function_result() {
lua_pop(L, returncount);
}
};
namespace stack {
template <>
struct unqualified_pusher<unsafe_function_result> {
static int push(lua_State* L, const unsafe_function_result& fr) {
int p = 0;
for (int i = 0; i < fr.return_count(); ++i) {
lua_pushvalue(L, i + fr.stack_index());
++p;
}
return p;
}
};
} // namespace stack
} // namespace sol
// end of sol/unsafe_function_result.hpp
#include <cstdint>
namespace sol {
namespace detail {
template <>
struct is_speshul<unsafe_function_result> : std::true_type {};
template <>
struct is_speshul<protected_function_result> : std::true_type {};
template <std::size_t I, typename... Args, typename T>
stack_proxy get(types<Args...>, meta::index_value<0>, meta::index_value<I>, const T& fr) {
return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}
template <std::size_t I, std::size_t N, typename Arg, typename... Args, typename T, meta::enable<meta::boolean<(N > 0)>> = meta::enabler>
stack_proxy get(types<Arg, Args...>, meta::index_value<N>, meta::index_value<I>, const T& fr) {
return get(types<Args...>(), meta::index_value<N - 1>(), meta::index_value<I + lua_size<Arg>::value>(), fr);
}
} // namespace detail
template <>
struct tie_size<unsafe_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {};
template <>
struct tie_size<protected_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {};
template <std::size_t I>
stack_proxy get(const unsafe_function_result& fr) {
return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}
template <std::size_t I, typename... Args>
stack_proxy get(types<Args...> t, const unsafe_function_result& fr) {
return detail::get(t, meta::index_value<I>(), meta::index_value<0>(), fr);
}
template <std::size_t I>
stack_proxy get(const protected_function_result& fr) {
return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}
template <std::size_t I, typename... Args>
stack_proxy get(types<Args...> t, const protected_function_result& fr) {
return detail::get(t, meta::index_value<I>(), meta::index_value<0>(), fr);
}
} // namespace sol
// end of sol/function_result.hpp
// beginning of sol/function_types.hpp
// beginning of sol/function_types_core.hpp
// beginning of sol/wrapper.hpp
namespace sol {
namespace detail {
template <typename T>
using array_return_type = meta::conditional_t<std::is_array<T>::value, std::add_lvalue_reference_t<T>, T>;
}
template <typename F, typename = void>
struct wrapper {
typedef lua_bind_traits<meta::unqualified_t<F>> traits_type;
typedef typename traits_type::args_list args_list;
typedef typename traits_type::args_list free_args_list;
typedef typename traits_type::returns_list returns_list;
template <typename... Args>
static decltype(auto) call(F& f, Args&&... args) {
return f(std::forward<Args>(args)...);
}
struct caller {
template <typename... Args>
decltype(auto) operator()(F& fx, Args&&... args) const {
return call(fx, std::forward<Args>(args)...);
}
};
};
template <typename F>
struct wrapper<F, std::enable_if_t<std::is_function<std::remove_pointer_t<meta::unqualified_t<F>>>::value>> {
typedef lua_bind_traits<std::remove_pointer_t<meta::unqualified_t<F>>> traits_type;
typedef typename traits_type::args_list args_list;
typedef typename traits_type::args_list free_args_list;
typedef typename traits_type::returns_list returns_list;
template <F fx, typename... Args>
static decltype(auto) invoke(Args&&... args) {
return fx(std::forward<Args>(args)...);
}
template <typename... Args>
static decltype(auto) call(F& fx, Args&&... args) {
return fx(std::forward<Args>(args)...);
}
struct caller {
template <typename... Args>
decltype(auto) operator()(F& fx, Args&&... args) const {
return call(fx, std::forward<Args>(args)...);
}
};
template <F fx>
struct invoker {
template <typename... Args>
decltype(auto) operator()(Args&&... args) const {
return invoke<fx>(std::forward<Args>(args)...);
}
};
};
template <typename F>
struct wrapper<F, std::enable_if_t<std::is_member_object_pointer<meta::unqualified_t<F>>::value>> {
typedef lua_bind_traits<meta::unqualified_t<F>> traits_type;
typedef typename traits_type::object_type object_type;
typedef typename traits_type::return_type return_type;
typedef typename traits_type::args_list args_list;
typedef types<object_type&, return_type> free_args_list;
typedef typename traits_type::returns_list returns_list;
template <F fx>
static auto call(object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> {
return mem.*fx;
}
template <F fx, typename Arg, typename... Args>
static decltype(auto) invoke(object_type& mem, Arg&& arg, Args&&...) {
return mem.*fx = std::forward<Arg>(arg);
}
template <typename Fx>
static auto call(Fx&& fx, object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> {
return mem.*fx;
}
template <typename Fx, typename Arg, typename... Args>
static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...) {
using actual_type = meta::unqualified_t<detail::array_return_type<decltype(mem.*fx)>>;
if constexpr (std::is_array_v<actual_type>) {
using std::cbegin;
using std::cend;
auto first = cbegin(arg);
auto last = cend(arg);
for (std::size_t i = 0; first != last; ++i, ++first) {
(mem.*fx)[i] = *first;
}
}
else {
(mem.*fx) = std::forward<Arg>(arg);
}
}
struct caller {
template <typename Fx, typename... Args>
decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const {
return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
}
};
template <F fx>
struct invoker {
template <typename... Args>
decltype(auto) operator()(Args&&... args) const {
return invoke<fx>(std::forward<Args>(args)...);
}
};
};
template <typename F, typename R, typename O, typename... FArgs>
struct member_function_wrapper {
typedef O object_type;
typedef lua_bind_traits<F> traits_type;
typedef typename traits_type::args_list args_list;
typedef types<object_type&, FArgs...> free_args_list;
typedef meta::tuple_types<R> returns_list;
template <F fx, typename... Args>
static R invoke(O& mem, Args&&... args) {
return (mem.*fx)(std::forward<Args>(args)...);
}
template <typename Fx, typename... Args>
static R call(Fx&& fx, O& mem, Args&&... args) {
return (mem.*fx)(std::forward<Args>(args)...);
}
struct caller {
template <typename Fx, typename... Args>
decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const {
return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
}
};
template <F fx>
struct invoker {
template <typename... Args>
decltype(auto) operator()(O& mem, Args&&... args) const {
return invoke<fx>(mem, std::forward<Args>(args)...);
}
};
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...)> : public member_function_wrapper<R (O::*)(Args...), R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const> : public member_function_wrapper<R (O::*)(Args...) const, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile> : public member_function_wrapper<R (O::*)(Args...) const volatile, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...)&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...)&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) &&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const&&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile&&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) &&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const&&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile&&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> {};
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
// noexcept has become a part of a function's type
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) noexcept> : public member_function_wrapper<R (O::*)(Args...) noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const noexcept> : public member_function_wrapper<R (O::*)(Args...) const noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) & noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) & noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile& noexcept>
: public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) && noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) && noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> {};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile&& noexcept>
: public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> {};
#endif // noexcept is part of a function's type
} // namespace sol
// end of sol/wrapper.hpp
#include <memory>
namespace sol {
namespace function_detail {
template <typename Fx, int start = 1, bool is_yielding = false>
int call(lua_State* L) {
Fx& fx = stack::get<user<Fx>>(L, upvalue_index(start));
int nr = fx(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
}
} // namespace sol::function_detail
// end of sol/function_types_core.hpp
// beginning of sol/function_types_templated.hpp
// beginning of sol/call.hpp
// beginning of sol/property.hpp
#include <type_traits>
#include <utility>
namespace sol {
namespace detail {
struct no_prop {};
}
template <typename R, typename W>
struct property_wrapper : detail::ebco<R, 0>, detail::ebco<W, 1> {
private:
using read_base_t = detail::ebco<R, 0>;
using write_base_t = detail::ebco<W, 1>;
public:
template <typename Rx, typename Wx>
property_wrapper(Rx&& r, Wx&& w)
: read_base_t(std::forward<Rx>(r)), write_base_t(std::forward<Wx>(w)) {
}
W& write() {
return write_base_t::value();
}
const W& write() const {
return write_base_t::value();
}
R& read() {
return read_base_t::value();
}
const R& read() const {
return read_base_t::value();
}
};
template <typename F, typename G>
inline decltype(auto) property(F&& f, G&& g) {
typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
typedef lua_bind_traits<meta::unqualified_t<G>> right_traits;
if constexpr (left_traits::free_arity < right_traits::free_arity) {
return property_wrapper<std::decay_t<F>, std::decay_t<G>>(std::forward<F>(f), std::forward<G>(g));
}
else {
return property_wrapper<std::decay_t<G>, std::decay_t<F>>(std::forward<G>(g), std::forward<F>(f));
}
}
template <typename F>
inline decltype(auto) property(F&& f) {
typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
if constexpr (left_traits::free_arity < 2) {
return property_wrapper<std::decay_t<F>, detail::no_prop>(std::forward<F>(f), detail::no_prop());
}
else {
return property_wrapper<detail::no_prop, std::decay_t<F>>(detail::no_prop(), std::forward<F>(f));
}
}
template <typename F>
inline decltype(auto) readonly_property(F&& f) {
return property_wrapper<std::decay_t<F>, detail::no_prop>(std::forward<F>(f), detail::no_prop());
}
template <typename F>
inline decltype(auto) writeonly_property(F&& f) {
return property_wrapper<detail::no_prop, std::decay_t<F>>(detail::no_prop(), std::forward<F>(f));
}
template <typename T>
struct readonly_wrapper : detail::ebco<T> {
private:
using base_t = detail::ebco<T>;
public:
using base_t::base_t;
operator T&() {
return base_t::value();
}
operator const T&() const {
return base_t::value();
}
};
// Allow someone to make a member variable readonly (const)
template <typename R, typename T>
inline auto readonly(R T::*v) {
return readonly_wrapper<meta::unqualified_t<decltype(v)>>(v);
}
template <typename T>
struct var_wrapper : detail::ebco<T> {
private:
using base_t = detail::ebco<T>;
public:
using base_t::base_t;
};
template <typename V>
inline auto var(V&& v) {
typedef std::decay_t<V> T;
return var_wrapper<T>(std::forward<V>(v));
}
namespace meta {
template <typename T>
struct is_member_object : std::is_member_object_pointer<T> {};
template <typename T>
struct is_member_object<readonly_wrapper<T>> : std::true_type {};
template <typename T>
inline constexpr bool is_member_object_v = is_member_object<T>::value;
} // namespace meta
} // namespace sol
// end of sol/property.hpp
// beginning of sol/protect.hpp
#include <utility>
namespace sol {
template <typename T>
struct protect_t {
T value;
template <typename Arg, typename... Args, meta::disable<std::is_same<protect_t, meta::unqualified_t<Arg>>> = meta::enabler>
protect_t(Arg&& arg, Args&&... args)
: value(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
protect_t(const protect_t&) = default;
protect_t(protect_t&&) = default;
protect_t& operator=(const protect_t&) = default;
protect_t& operator=(protect_t&&) = default;
};
template <typename T>
auto protect(T&& value) {
return protect_t<std::decay_t<T>>(std::forward<T>(value));
}
} // namespace sol
// end of sol/protect.hpp
namespace sol {
namespace u_detail {
} // namespace u_detail
namespace policy_detail {
template <int I, int... In>
inline void handle_policy(static_stack_dependencies<I, In...>, lua_State* L, int&) {
if constexpr (sizeof...(In) == 0) {
(void)L;
return;
}
else {
absolute_index ai(L, I);
if (type_of(L, ai) != type::userdata) {
return;
}
lua_createtable(L, static_cast<int>(sizeof...(In)), 0);
stack_reference deps(L, -1);
auto per_dep = [&L, &deps](int i) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushvalue(L, i);
luaL_ref(L, deps.stack_index());
};
(void)per_dep;
(void)detail::swallow{ int(), (per_dep(In), int())... };
lua_setuservalue(L, ai);
}
}
template <int... In>
inline void handle_policy(returns_self_with<In...>, lua_State* L, int& pushed) {
pushed = stack::push(L, raw_index(1));
handle_policy(static_stack_dependencies<-1, In...>(), L, pushed);
}
inline void handle_policy(const stack_dependencies& sdeps, lua_State* L, int&) {
absolute_index ai(L, sdeps.target);
if (type_of(L, ai) != type::userdata) {
return;
}
lua_createtable(L, static_cast<int>(sdeps.size()), 0);
stack_reference deps(L, -1);
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, static_cast<int>(sdeps.size()), detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
for (std::size_t i = 0; i < sdeps.size(); ++i) {
lua_pushvalue(L, sdeps.stack_indices[i]);
luaL_ref(L, deps.stack_index());
}
lua_setuservalue(L, ai);
}
template <typename P, meta::disable<std::is_base_of<detail::policy_base_tag, meta::unqualified_t<P>>> = meta::enabler>
inline void handle_policy(P&& p, lua_State* L, int& pushed) {
pushed = std::forward<P>(p)(L, pushed);
}
} // namespace policy_detail
namespace function_detail {
inline int no_construction_error(lua_State* L) {
return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)");
}
} // namespace function_detail
namespace call_detail {
template <typename R, typename W>
inline auto& pick(std::true_type, property_wrapper<R, W>& f) {
return f.read();
}
template <typename R, typename W>
inline auto& pick(std::false_type, property_wrapper<R, W>& f) {
return f.write();
}
template <typename T, typename List>
struct void_call : void_call<T, meta::function_args_t<List>> {};
template <typename T, typename... Args>
struct void_call<T, types<Args...>> {
static void call(Args...) {
}
};
template <typename T, bool checked, bool clean_stack>
struct constructor_match {
T* obj_;
constructor_match(T* o) : obj_(o) {
}
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const {
detail::default_construct func{};
return stack::call_into_lua<checked, clean_stack>(r, a, L, start, func, obj_);
}
};
namespace overload_detail {
template <std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...) {
return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types");
}
template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L,
int fxarity, int start, Args&&... args) {
typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
typedef meta::tuple_types<typename traits::return_type> return_types;
typedef typename traits::free_args_list args_list;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if constexpr (!traits::runtime_variadics_t::value
&& meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
return overload_match_arity(types<Fxs...>(),
std::index_sequence<In...>(),
std::index_sequence<M...>(),
std::forward<Match>(matchfx),
L,
fxarity,
start,
std::forward<Args>(args)...);
}
else {
if constexpr (!traits::runtime_variadics_t::value) {
if (traits::free_arity != fxarity) {
return overload_match_arity(types<Fxs...>(),
std::index_sequence<In...>(),
std::index_sequence<traits::free_arity, M...>(),
std::forward<Match>(matchfx),
L,
fxarity,
start,
std::forward<Args>(args)...);
}
}
stack::record tracking{};
if (!stack::stack_detail::check_types(args_list(), L, start, no_panic, tracking)) {
return overload_match_arity(types<Fxs...>(),
std::index_sequence<In...>(),
std::index_sequence<M...>(),
std::forward<Match>(matchfx),
L,
fxarity,
start,
std::forward<Args>(args)...);
}
return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}
}
template <std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(
types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
return overload_match_arity(types<>(),
std::index_sequence<>(),
std::index_sequence<M...>(),
std::forward<Match>(matchfx),
L,
fxarity,
start,
std::forward<Args>(args)...);
}
template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(
types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
typedef meta::tuple_types<typename traits::return_type> return_types;
typedef typename traits::free_args_list args_list;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if constexpr (!traits::runtime_variadics_t::value
&& meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
return overload_match_arity(types<>(),
std::index_sequence<>(),
std::index_sequence<M...>(),
std::forward<Match>(matchfx),
L,
fxarity,
start,
std::forward<Args>(args)...);
}
if constexpr (!traits::runtime_variadics_t::value) {
if (traits::free_arity != fxarity) {
return overload_match_arity(types<>(),
std::index_sequence<>(),
std::index_sequence<traits::free_arity, M...>(),
std::forward<Match>(matchfx),
L,
fxarity,
start,
std::forward<Args>(args)...);
}
}
return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match,
typename... Args>
inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx,
lua_State* L, int fxarity, int start, Args&&... args) {
typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
typedef meta::tuple_types<typename traits::return_type> return_types;
typedef typename traits::free_args_list args_list;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if constexpr (!traits::runtime_variadics_t::value
&& meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
return overload_match_arity(types<Fx1, Fxs...>(),
std::index_sequence<I1, In...>(),
std::index_sequence<M...>(),
std::forward<Match>(matchfx),
L,
fxarity,
start,
std::forward<Args>(args)...);
}
else {
if constexpr (!traits::runtime_variadics_t::value) {
if (traits::free_arity != fxarity) {
return overload_match_arity(types<Fx1, Fxs...>(),
std::index_sequence<I1, In...>(),
std::index_sequence<traits::free_arity, M...>(),
std::forward<Match>(matchfx),
L,
fxarity,
start,
std::forward<Args>(args)...);
}
}
stack::record tracking{};
if (!stack::stack_detail::check_types(args_list(), L, start, no_panic, tracking)) {
return overload_match_arity(types<Fx1, Fxs...>(),
std::index_sequence<I1, In...>(),
std::index_sequence<M...>(),
std::forward<Match>(matchfx),
L,
fxarity,
start,
std::forward<Args>(args)...);
}
return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}
}
} // namespace overload_detail
template <typename... Functions, typename Match, typename... Args>
inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
return overload_detail::overload_match_arity_single(types<Functions...>(),
std::make_index_sequence<sizeof...(Functions)>(),
std::index_sequence<>(),
std::forward<Match>(matchfx),
L,
fxarity,
start,
std::forward<Args>(args)...);
}
template <typename... Functions, typename Match, typename... Args>
inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) {
int fxarity = lua_gettop(L) - (start - 1);
return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename T, typename... TypeLists, typename Match, typename... Args>
inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
// use same overload resolution matching as all other parts of the framework
return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>(
std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename T, bool checked, bool clean_stack, typename... TypeLists>
inline int construct_trampolined(lua_State* L) {
static const auto& meta = usertype_traits<T>::metatable();
int argcount = lua_gettop(L);
call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot;
argcount -= static_cast<int>(syntax);
T* obj = detail::usertype_allocate<T>(L);
reference userdataref(L, -1);
stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
umf();
// put userdata at the first index
lua_insert(L, 1);
construct_match<T, TypeLists...>(constructor_match<T, checked, clean_stack>(obj), L, argcount, 1 + static_cast<int>(syntax));
userdataref.push();
return 1;
}
template <typename T, bool checked, bool clean_stack, typename... TypeLists>
inline int construct(lua_State* L) {
return detail::static_trampoline<&construct_trampolined<T, checked, clean_stack, TypeLists...>>(L);
}
template <typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename = void>
struct agnostic_lua_call_wrapper {
template <typename Fx, typename... Args>
static int call(lua_State* L, Fx&& f, Args&&... args) {
using uFx = meta::unqualified_t<Fx>;
static constexpr bool is_ref = is_lua_reference_v<uFx>;
if constexpr (is_ref) {
if constexpr (is_index) {
return stack::push(L, std::forward<Fx>(f), std::forward<Args>(args)...);
}
else {
std::forward<Fx>(f) = stack::unqualified_get<F>(L, boost + (is_variable ? 3 : 1));
return 0;
}
}
else {
using wrap = wrapper<uFx>;
using traits_type = typename wrap::traits_type;
using fp_t = typename traits_type::function_pointer_type;
constexpr bool is_function_pointer_convertible
= std::is_class_v<uFx> && std::is_convertible_v<std::decay_t<Fx>, fp_t>;
if constexpr (is_function_pointer_convertible) {
fp_t fx = f;
return agnostic_lua_call_wrapper<fp_t, is_index, is_variable, checked, boost, clean_stack>{}.call(
L, fx, std::forward<Args>(args)...);
}
else {
using returns_list = typename wrap::returns_list;
using args_list = typename wrap::free_args_list;
using caller = typename wrap::caller;
return stack::call_into_lua<checked, clean_stack>(
returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...);
}
}
}
};
template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<var_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> {
template <typename F>
static int call(lua_State* L, F&& f) {
if constexpr (is_index) {
constexpr bool is_stack = is_stack_based_v<meta::unqualified_t<decltype(detail::unwrap(f.value()))>>;
if constexpr (clean_stack && !is_stack) {
lua_settop(L, 0);
}
return stack::push_reference(L, detail::unwrap(f.value()));
}
else {
if constexpr (std::is_const_v<meta::unwrapped_t<T>>) {
(void)f;
return luaL_error(L, "sol: cannot write to a readonly (const) variable");
}
else {
using R = meta::unwrapped_t<T>;
if constexpr (std::is_assignable_v<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>) {
detail::unwrap(f.value()) = stack::unqualified_get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1));
if (clean_stack) {
lua_settop(L, 0);
}
return 0;
}
else {
return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
}
}
}
}
};
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<lua_CFunction_ref, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, lua_CFunction_ref f) {
return f(L);
}
};
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, lua_CFunction f) {
return f(L);
}
};
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<detail::lua_CFunction_noexcept, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, detail::lua_CFunction_noexcept f) {
return f(L);
}
};
#endif // noexcept function types
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<detail::no_prop, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, const detail::no_prop&) {
return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property");
}
};
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, const no_construction&) {
return function_detail::no_construction_error(L);
}
};
template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State*, const bases<Args...>&) {
// Uh. How did you even call this, lul
return 0;
}
};
template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<std::reference_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, std::reference_wrapper<T> f) {
agnostic_lua_call_wrapper<T, is_index, is_variable, checked, boost, clean_stack> alcw{};
return alcw.call(L, f.get());
}
};
template <typename T, typename F, bool is_index, bool is_variable, bool checked = detail::default_safe_function_calls, int boost = 0,
bool clean_stack = true, typename = void>
struct lua_call_wrapper {
template <typename Fx, typename... Args>
static int call(lua_State* L, Fx&& fx, Args&&... args) {
if constexpr (std::is_member_function_pointer_v<F>) {
using wrap = wrapper<F>;
using object_type = typename wrap::object_type;
if constexpr (sizeof...(Args) < 1) {
using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
static_assert(std::is_base_of_v<object_type, Ta>, "It seems like you might have accidentally bound a class type with a member function method that does not correspond to the class. For example, there could be a small type in your new_usertype<T>(...) binding, where you specify one class \"T\" but then bind member methods from a complete unrelated class. Check things over!");
#if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
return luaL_error(L,
"sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are "
"preceeded by the "
"actual object with '.' syntax)");
}
object_type* o = static_cast<object_type*>(maybeo.value());
return call(L, std::forward<Fx>(fx), *o);
#else
object_type& o = static_cast<object_type&>(*stack::unqualified_get<non_null<Ta*>>(L, 1));
return call(L, std::forward<Fx>(fx), o);
#endif // Safety
}
else {
using returns_list = typename wrap::returns_list;
using args_list = typename wrap::args_list;
using caller = typename wrap::caller;
return stack::call_into_lua<checked, clean_stack>(
returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), std::forward<Args>(args)...);
}
}
else if constexpr (std::is_member_object_pointer_v<F>) {
using wrap = wrapper<F>;
using object_type = typename wrap::object_type;
if constexpr (is_index) {
if constexpr (sizeof...(Args) < 1) {
using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
static_assert(std::is_base_of_v<object_type, Ta>, "It seems like you might have accidentally bound a class type with a member function method that does not correspond to the class. For example, there could be a small type in your new_usertype<T>(...) binding, where you specify one class \"T\" but then bind member methods from a complete unrelated class. Check things over!");
#if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
if (is_variable) {
return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
}
return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
}
object_type* o = static_cast<object_type*>(maybeo.value());
return call(L, std::forward<Fx>(fx), *o);
#else
object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
return call(L, std::forward<Fx>(fx), o);
#endif // Safety
}
else {
using returns_list = typename wrap::returns_list;
using caller = typename wrap::caller;
return stack::call_into_lua<checked, clean_stack>(returns_list(),
types<>(),
L,
boost + (is_variable ? 3 : 2),
caller(),
std::forward<Fx>(fx),
std::forward<Args>(args)...);
}
}
else {
using traits_type = lua_bind_traits<F>;
using return_type = typename traits_type::return_type;
constexpr bool ret_is_const = std::is_const_v<std::remove_reference_t<return_type>>;
if constexpr (ret_is_const) {
(void)fx;
(void)detail::swallow{ 0, (static_cast<void>(args), 0)... };
return luaL_error(L, "sol: cannot write to a readonly (const) variable");
}
else {
using u_return_type = meta::unqualified_t<return_type>;
constexpr bool is_assignable = std::is_copy_assignable_v<u_return_type> || std::is_array_v<u_return_type>;
if constexpr (!is_assignable) {
(void)fx;
(void)detail::swallow{ 0, ((void)args, 0)... };
return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
}
else {
using args_list = typename wrap::args_list;
using caller = typename wrap::caller;
if constexpr (sizeof...(Args) > 0) {
return stack::call_into_lua<checked, clean_stack>(types<void>(),
args_list(),
L,
boost + (is_variable ? 3 : 2),
caller(),
std::forward<Fx>(fx),
std::forward<Args>(args)...);
}
else {
using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
#if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
if (is_variable) {
return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)");
}
return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)");
}
object_type* po = static_cast<object_type*>(maybeo.value());
object_type& o = *po;
#else
object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
#endif // Safety
return stack::call_into_lua<checked, clean_stack>(
types<void>(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), o);
}
}
}
}
}
else {
agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost, clean_stack> alcw{};
return alcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
}
};
template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, readonly_wrapper<F>, is_index, is_variable, checked, boost, clean_stack, C> {
using traits_type = lua_bind_traits<F>;
using wrap = wrapper<F>;
using object_type = typename wrap::object_type;
static int call(lua_State* L, readonly_wrapper<F>&& rw) {
if constexpr (!is_index) {
(void)rw;
return luaL_error(L, "sol: cannot write to a sol::readonly variable");
}
else {
lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
return lcw.call(L, std::move(rw.value()));
}
}
static int call(lua_State* L, readonly_wrapper<F>&& rw, object_type& o) {
if constexpr (!is_index) {
(void)o;
return call(L, std::move(rw));
}
else {
lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
return lcw.call(L, rw.value(), o);
}
}
static int call(lua_State* L, const readonly_wrapper<F>& rw) {
if constexpr (!is_index) {
(void)rw;
return luaL_error(L, "sol: cannot write to a sol::readonly variable");
}
else {
lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
return lcw.call(L, rw.value());
}
}
static int call(lua_State* L, const readonly_wrapper<F>& rw, object_type& o) {
if constexpr (!is_index) {
(void)o;
return call(L, rw);
}
else {
lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
return lcw.call(L, rw.value(), o);
}
}
};
template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef constructor_list<Args...> F;
static int call(lua_State* L, F&) {
const auto& meta = usertype_traits<T>::metatable();
int argcount = lua_gettop(L);
call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot;
argcount -= static_cast<int>(syntax);
T* obj = detail::usertype_allocate<T>(L);
reference userdataref(L, -1);
stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
umf();
// put userdata at the first index
lua_insert(L, 1);
construct_match<T, Args...>(constructor_match<T, checked, clean_stack>(obj), L, argcount, boost + 1 + 1 + static_cast<int>(syntax));
userdataref.push();
return 1;
}
};
template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef constructor_wrapper<Cxs...> F;
struct onmatch {
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f) {
const auto& meta = usertype_traits<T>::metatable();
T* obj = detail::usertype_allocate<T>(L);
reference userdataref(L, -1);
stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
umf();
auto& func = std::get<I>(f.functions);
// put userdata at the first index
lua_insert(L, 1);
stack::call_into_lua<checked, clean_stack>(r, a, L, boost + 1 + start, func, detail::implicit_wrapper<T>(obj));
userdataref.push();
return 1;
}
};
static int call(lua_State* L, F& f) {
call_syntax syntax = stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1);
int syntaxval = static_cast<int>(syntax);
int argcount = lua_gettop(L) - syntaxval;
return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f);
}
};
template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, C> {
template <typename F>
static int call(lua_State* L, F&& f) {
if constexpr (std::is_void_v<Fx>) {
return detail::usertype_alloc_destruct<T>(L);
}
else {
using uFx = meta::unqualified_t<Fx>;
lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw{};
return lcw.call(L, std::forward<F>(f).fx);
}
}
};
template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef overload_set<Fs...> F;
struct on_match {
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
auto& f = std::get<I>(fx.functions);
return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f);
}
};
static int call(lua_State* L, F& fx) {
return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx);
}
};
template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef factory_wrapper<Fs...> F;
struct on_match {
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
auto& f = std::get<I>(fx.functions);
return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f);
}
};
static int call(lua_State* L, F& fx) {
return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx);
}
};
template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef meta::conditional_t<is_index, R, W> P;
typedef meta::unqualified_t<P> U;
typedef wrapper<U> wrap;
typedef lua_bind_traits<U> traits_type;
typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type;
template <typename F, typename... Args>
static int call(lua_State* L, F&& f, Args&&... args) {
constexpr bool is_specialized = meta::any<std::is_same<U, detail::no_prop>,
meta::is_specialization_of<U, var_wrapper>,
meta::is_specialization_of<U, constructor_wrapper>,
meta::is_specialization_of<U, constructor_list>,
std::is_member_pointer<U>>::value;
if constexpr (is_specialized) {
if constexpr (is_index) {
decltype(auto) p = f.read();
lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw{};
return lcw.call(L, p, std::forward<Args>(args)...);
}
else {
decltype(auto) p = f.write();
lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw{};
return lcw.call(L, p, std::forward<Args>(args)...);
}
}
else {
constexpr bool non_class_object_type = meta::any<std::is_void<object_type>,
meta::boolean<lua_type_of<meta::unwrap_unqualified_t<object_type>>::value != type::userdata>>::value;
if constexpr (non_class_object_type) {
// The type being void means we don't have any arguments, so it might be a free functions?
using args_list = typename traits_type::free_args_list;
using returns_list = typename wrap::returns_list;
using caller = typename wrap::caller;
if constexpr (is_index) {
decltype(auto) pf = f.read();
return stack::call_into_lua<checked, clean_stack>(
returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf);
}
else {
decltype(auto) pf = f.write();
return stack::call_into_lua<checked, clean_stack>(
returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf);
}
}
else {
using args_list = meta::pop_front_type_t<typename traits_type::free_args_list>;
using Ta = T;
using Oa = std::remove_pointer_t<object_type>;
#if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
if (is_variable) {
return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
}
return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
}
Oa* o = static_cast<Oa*>(maybeo.value());
#else
Oa* o = static_cast<Oa*>(stack::get<non_null<Ta*>>(L, 1));
#endif // Safety
using returns_list = typename wrap::returns_list;
using caller = typename wrap::caller;
if constexpr (is_index) {
decltype(auto) pf = f.read();
return stack::call_into_lua<checked, clean_stack>(
returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o));
}
else {
decltype(auto) pf = f.write();
return stack::call_into_lua<checked, clean_stack>(
returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o));
}
}
}
}
};
template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef protect_t<V> F;
template <typename... Args>
static int call(lua_State* L, F& fx, Args&&... args) {
return lua_call_wrapper<T, V, is_index, is_variable, true, boost, clean_stack>{}.call(L, fx.value, std::forward<Args>(args)...);
}
};
template <typename T, typename F, typename... Policies, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, policy_wrapper<F, Policies...>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef policy_wrapper<F, Policies...> P;
template <std::size_t... In>
static int call(std::index_sequence<In...>, lua_State* L, P& fx) {
int pushed = lua_call_wrapper<T, F, is_index, is_variable, checked, boost, false, C>{}.call(L, fx.value);
(void)detail::swallow{ int(), (policy_detail::handle_policy(std::get<In>(fx.policies), L, pushed), int())... };
return pushed;
}
static int call(lua_State* L, P& fx) {
typedef typename P::indices indices;
return call(indices(), L, fx);
}
};
template <typename T, typename Y, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, yielding_t<Y>, is_index, is_variable, checked, boost, clean_stack, C> {
template <typename F>
static int call(lua_State* L, F&& f) {
return lua_call_wrapper<T, meta::unqualified_t<Y>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f.func);
}
};
template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, const function_arguments<Sig, P>& f) {
lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw{};
return lcw.call(L, std::get<0>(f.arguments));
}
static int call(lua_State* L, function_arguments<Sig, P>&& f) {
lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw{};
return lcw.call(L, std::get<0>(std::move(f.arguments)));
}
};
template <typename T, bool is_index, bool is_variable, int boost = 0, bool checked = detail::default_safe_function_calls, bool clean_stack = true,
typename Fx, typename... Args>
inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) {
using uFx = meta::unqualified_t<Fx>;
if constexpr (meta::is_specialization_of_v<uFx, yielding_t>) {
using real_fx = meta::unqualified_t<decltype(std::forward<Fx>(fx).func)>;
lua_call_wrapper<T, real_fx, is_index, is_variable, checked, boost, clean_stack> lcw{};
return lcw.call(L, std::forward<Fx>(fx).func, std::forward<Args>(args)...);
}
else {
lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw{};
return lcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
}
template <typename T, bool is_index, bool is_variable, typename F, int start = 1, bool checked = detail::default_safe_function_calls,
bool clean_stack = true>
inline int call_user(lua_State* L) {
auto& fx = stack::unqualified_get<user<F>>(L, upvalue_index(start));
using uFx = meta::unqualified_t<F>;
int nr = call_wrapped<T, is_index, is_variable, 0, checked, clean_stack>(L, fx);
if constexpr (meta::is_specialization_of_v<uFx, yielding_t>) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
template <typename T, typename = void>
struct is_var_bind : std::false_type {};
template <typename T>
struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type {};
template <typename T>
struct is_var_bind<T, std::enable_if_t<is_lua_reference_or_proxy<T>::value>> : std::true_type {};
template <>
struct is_var_bind<detail::no_prop> : std::true_type {};
template <typename R, typename W>
struct is_var_bind<property_wrapper<R, W>> : std::true_type {};
template <typename T>
struct is_var_bind<var_wrapper<T>> : std::true_type {};
template <typename T>
struct is_var_bind<readonly_wrapper<T>> : is_var_bind<meta::unqualified_t<T>> {};
template <typename F, typename... Policies>
struct is_var_bind<policy_wrapper<F, Policies...>> : is_var_bind<meta::unqualified_t<F>> {};
} // namespace call_detail
template <typename T>
struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> {};
template <typename T>
using is_var_wrapper = meta::is_specialization_of<T, var_wrapper>;
template <typename T>
struct is_function_binding : meta::neg<is_variable_binding<T>> {};
} // namespace sol
// end of sol/call.hpp
namespace sol {
namespace function_detail {
template <typename F, F fx>
inline int call_wrapper_variable(std::false_type, lua_State* L) {
typedef meta::bind_traits<meta::unqualified_t<F>> traits_type;
typedef typename traits_type::args_list args_list;
typedef meta::tuple_types<typename traits_type::return_type> return_type;
return stack::call_into_lua(return_type(), args_list(), L, 1, fx);
}
template <typename R, typename V, V, typename T>
inline int call_set_assignable(std::false_type, T&&, lua_State* L) {
return luaL_error(L, "cannot write to this type: copy assignment/constructor not available");
}
template <typename R, typename V, V variable, typename T>
inline int call_set_assignable(std::true_type, lua_State* L, T&& mem) {
(mem.*variable) = stack::get<R>(L, 2);
return 0;
}
template <typename R, typename V, V, typename T>
inline int call_set_variable(std::false_type, lua_State* L, T&&) {
return luaL_error(L, "cannot write to a const variable");
}
template <typename R, typename V, V variable, typename T>
inline int call_set_variable(std::true_type, lua_State* L, T&& mem) {
return call_set_assignable<R, V, variable>(std::is_assignable<std::add_lvalue_reference_t<R>, R>(), L, std::forward<T>(mem));
}
template <typename V, V variable>
inline int call_wrapper_variable(std::true_type, lua_State* L) {
typedef meta::bind_traits<meta::unqualified_t<V>> traits_type;
typedef typename traits_type::object_type T;
typedef typename traits_type::return_type R;
auto& mem = stack::get<T>(L, 1);
switch (lua_gettop(L)) {
case 1: {
decltype(auto) r = (mem.*variable);
stack::push_reference(L, std::forward<decltype(r)>(r));
return 1;
}
case 2:
return call_set_variable<R, V, variable>(meta::neg<std::is_const<R>>(), L, mem);
default:
return luaL_error(L, "incorrect number of arguments to member variable function call");
}
}
template <typename F, F fx>
inline int call_wrapper_function(std::false_type, lua_State* L) {
return call_wrapper_variable<F, fx>(std::is_member_object_pointer<F>(), L);
}
template <typename F, F fx>
inline int call_wrapper_function(std::true_type, lua_State* L) {
return call_detail::call_wrapped<void, false, false>(L, fx);
}
template <typename F, F fx>
int call_wrapper_entry(lua_State* L) noexcept(meta::bind_traits<F>::is_noexcept) {
return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L);
}
template <typename... Fxs>
struct c_call_matcher {
template <typename Fx, std::size_t I, typename R, typename... Args>
int operator()(types<Fx>, meta::index_value<I>, types<R>, types<Args...>, lua_State* L, int, int) const {
typedef meta::at_in_pack_t<I, Fxs...> target;
return target::call(L);
}
};
template <typename F, F fx>
inline int c_call_raw(std::true_type, lua_State* L) {
return fx(L);
}
template <typename F, F fx>
inline int c_call_raw(std::false_type, lua_State* L) {
#ifdef __clang__
return detail::trampoline(L, function_detail::call_wrapper_entry<F, fx>);
#else
return detail::typed_static_trampoline<decltype(&function_detail::call_wrapper_entry<F, fx>), (&function_detail::call_wrapper_entry<F, fx>)>(L);
#endif // fuck you clang :c
}
} // namespace function_detail
template <typename F, F fx>
inline int c_call(lua_State* L) {
typedef meta::unqualified_t<F> Fu;
typedef std::integral_constant<bool,
std::is_same<Fu, lua_CFunction>::value
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
|| std::is_same<Fu, detail::lua_CFunction_noexcept>::value
#endif
>
is_raw;
return function_detail::c_call_raw<F, fx>(is_raw(), L);
}
template <typename F, F f>
struct wrap {
typedef F type;
static int call(lua_State* L) {
return c_call<type, f>(L);
}
};
template <typename... Fxs>
inline int c_call(lua_State* L) {
if constexpr (sizeof...(Fxs) < 2) {
using target = meta::at_in_pack_t<0, Fxs...>;
return target::call(L);
}
else {
return call_detail::overload_match_arity<typename Fxs::type...>(function_detail::c_call_matcher<Fxs...>(), L, lua_gettop(L), 1);
}
}
} // namespace sol
// end of sol/function_types_templated.hpp
// beginning of sol/function_types_stateless.hpp
namespace sol { namespace function_detail {
template <typename Function, bool is_yielding>
struct upvalue_free_function {
using function_type = std::remove_pointer_t<std::decay_t<Function>>;
using traits_type = meta::bind_traits<function_type>;
static int real_call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L);
function_type* fx = udata.first;
return call_detail::call_wrapped<void, true, false>(L, fx);
}
static int call(lua_State* L) {
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
// Layout:
// idx 1...n: verbatim data of member function pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2));
auto& item = *static_cast<T*>(stack::get<void*>(L, upvalue_index(3)));
return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item);
}
static int call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
// Layout:
// idx 1...n: verbatim data of member variable pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
auto& mem = *objdata.first;
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 0:
return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
case 1:
return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
static int call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_member_variable<T, readonly_wrapper<Function>, is_yielding> {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
// Layout:
// idx 1...n: verbatim data of member variable pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
auto& mem = *objdata.first;
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 0:
return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
static int call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_this_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
// Layout:
// idx 1...n: verbatim data of member variable pointer
function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2));
return call_detail::call_wrapped<T, false, false>(L, memfx);
}
static int call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_this_member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
static int real_call(lua_State* L) noexcept(false) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 1:
return call_detail::call_wrapped<T, true, false>(L, var);
case 2:
return call_detail::call_wrapped<T, false, false>(L, var);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
static int call(lua_State* L) {
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_this_member_variable<T, readonly_wrapper<Function>, is_yielding> {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) noexcept(false) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 1:
return call_detail::call_wrapped<T, true, false>(L, var);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
static int call(lua_State* L) {
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
}} // namespace sol::function_detail
// end of sol/function_types_stateless.hpp
// beginning of sol/function_types_stateful.hpp
namespace sol {
namespace function_detail {
template <typename Func, bool is_yielding, bool no_trampoline>
struct functor_function {
typedef std::decay_t<meta::unwrap_unqualified_t<Func>> function_type;
function_type fx;
template <typename... Args>
functor_function(function_type f, Args&&... args)
: fx(std::move(f), std::forward<Args>(args)...) {
}
int call(lua_State* L) {
int nr = call_detail::call_wrapped<void, true, false>(L, fx);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
if (!no_trampoline) {
auto f = [&](lua_State*) -> int { return this->call(L); };
return detail::trampoline(L, f);
}
else {
return call(L);
}
}
};
template <typename T, typename Function, bool is_yielding>
struct member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef meta::function_return_t<function_type> return_type;
typedef meta::function_args_t<function_type> args_lists;
function_type invocation;
T member;
template <typename... Args>
member_function(function_type f, Args&&... args)
: invocation(std::move(f)), member(std::forward<Args>(args)...) {
}
int call(lua_State* L) {
int nr = call_detail::call_wrapped<T, true, false, -1>(L, invocation, detail::unwrap(detail::deref(member)));
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
auto f = [&](lua_State*) -> int { return this->call(L); };
return detail::trampoline(L, f);
}
};
template <typename T, typename Function, bool is_yielding>
struct member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef typename meta::bind_traits<function_type>::return_type return_type;
typedef typename meta::bind_traits<function_type>::args_list args_lists;
function_type var;
T member;
typedef std::add_lvalue_reference_t<meta::unwrapped_t<std::remove_reference_t<decltype(detail::deref(member))>>> M;
template <typename... Args>
member_variable(function_type v, Args&&... args)
: var(std::move(v)), member(std::forward<Args>(args)...) {
}
int call(lua_State* L) {
int nr;
{
M mem = detail::unwrap(detail::deref(member));
switch (lua_gettop(L)) {
case 0:
nr = call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
break;
case 1:
nr = call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
break;
default:
nr = luaL_error(L, "sol: incorrect number of arguments to member variable function");
break;
}
}
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
auto f = [&](lua_State*) -> int { return this->call(L); };
return detail::trampoline(L, f);
}
};
}
} // namespace sol::function_detail
// end of sol/function_types_stateful.hpp
// beginning of sol/function_types_overloaded.hpp
namespace sol {
namespace function_detail {
template <int start_skew, typename... Functions>
struct overloaded_function {
typedef std::tuple<Functions...> overload_list;
typedef std::make_index_sequence<sizeof...(Functions)> indices;
overload_list overloads;
overloaded_function(overload_list set)
: overloads(std::move(set)) {
}
overloaded_function(Functions... fxs)
: overloads(fxs...) {
}
template <typename Fx, std::size_t I, typename... R, typename... Args>
static int call(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, overload_list& ol) {
auto& func = std::get<I>(ol);
int nr = call_detail::call_wrapped<void, true, false, start_skew>(L, func);
return nr;
}
int operator()(lua_State* L) {
auto mfx = [](auto&&... args) { return call(std::forward<decltype(args)>(args)...); };
return call_detail::overload_match<Functions...>(mfx, L, 1 + start_skew, overloads);
}
};
}
} // namespace sol::function_detail
// end of sol/function_types_overloaded.hpp
// beginning of sol/resolve.hpp
namespace sol {
#ifndef __clang__
// constexpr is fine for not-clang
namespace detail {
template <typename R, typename... Args, typename F, typename = std::invoke_result_t<meta::unqualified_t<F>, Args...>>
inline constexpr auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) {
using Sig = R(Args...);
typedef meta::unqualified_t<F> Fu;
return static_cast<Sig Fu::*>(&Fu::operator());
}
template <typename F, typename U = meta::unqualified_t<F>>
inline constexpr auto resolve_f(std::true_type, F&& f)
-> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
}
template <typename F>
inline constexpr void resolve_f(std::false_type, F&&) {
static_assert(
meta::has_deducible_signature<F>::value, "Cannot use no-template-parameter call with an overloaded functor: specify the signature");
}
template <typename F, typename U = meta::unqualified_t<F>>
inline constexpr auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) {
return resolve_f(meta::has_deducible_signature<U> {}, std::forward<F>(f));
}
template <typename... Args, typename F, typename R = std::invoke_result_t<F&, Args...>>
inline constexpr auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
return resolve_i(types<R(Args...)>(), std::forward<F>(f));
}
template <typename Sig, typename C>
inline constexpr Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) {
return mem_func_ptr;
}
template <typename Sig, typename C>
inline constexpr Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) {
return mem_variable_ptr;
}
} // namespace detail
template <typename... Args, typename R>
inline constexpr auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) {
return fun_ptr;
}
template <typename Sig>
inline constexpr Sig* resolve(Sig* fun_ptr) {
return fun_ptr;
}
template <typename... Args, typename R, typename C>
inline constexpr auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) {
return mem_ptr;
}
template <typename Sig, typename C>
inline constexpr Sig C::*resolve(Sig C::*mem_ptr) {
return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
}
template <typename... Sig, typename F, meta::disable<std::is_function<meta::unqualified_t<F>>> = meta::enabler>
inline constexpr auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
}
#else
// Clang has distinct problems with constexpr arguments,
// so don't use the constexpr versions inside of clang.
namespace detail {
template <typename R, typename... Args, typename F, typename = std::invoke_result_t<meta::unqualified_t<F>, Args...>>
inline auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) {
using Sig = R(Args...);
typedef meta::unqualified_t<F> Fu;
return static_cast<Sig Fu::*>(&Fu::operator());
}
template <typename F, typename U = meta::unqualified_t<F>>
inline auto resolve_f(std::true_type, F&& f)
-> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
}
template <typename F>
inline void resolve_f(std::false_type, F&&) {
static_assert(
meta::has_deducible_signature<F>::value, "Cannot use no-template-parameter call with an overloaded functor: specify the signature");
}
template <typename F, typename U = meta::unqualified_t<F>>
inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) {
return resolve_f(meta::has_deducible_signature<U> {}, std::forward<F>(f));
}
template <typename... Args, typename F, typename R = std::invoke_result_t<F&, Args...>>
inline auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
return resolve_i(types<R(Args...)>(), std::forward<F>(f));
}
template <typename Sig, typename C>
inline Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) {
return mem_func_ptr;
}
template <typename Sig, typename C>
inline Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) {
return mem_variable_ptr;
}
} // namespace detail
template <typename... Args, typename R>
inline auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) {
return fun_ptr;
}
template <typename Sig>
inline Sig* resolve(Sig* fun_ptr) {
return fun_ptr;
}
template <typename... Args, typename R, typename C>
inline auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) {
return mem_ptr;
}
template <typename Sig, typename C>
inline Sig C::*resolve(Sig C::*mem_ptr) {
return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
}
template <typename... Sig, typename F>
inline auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
}
#endif
} // namespace sol
// end of sol/resolve.hpp
namespace sol {
namespace function_detail {
template <typename T>
struct class_indicator {
using type = T;
};
struct call_indicator { };
template <bool yielding>
int lua_c_wrapper(lua_State* L) {
lua_CFunction cf = lua_tocfunction(L, lua_upvalueindex(2));
int nr = cf(L);
if constexpr (yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
template <bool yielding>
int lua_c_noexcept_wrapper(lua_State* L) noexcept {
detail::lua_CFunction_noexcept cf = reinterpret_cast<detail::lua_CFunction_noexcept>(lua_tocfunction(L, lua_upvalueindex(2)));
int nr = cf(L);
if constexpr (yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
struct c_function_invocation { };
template <bool is_yielding, typename Fx, typename... Args>
void select(lua_State* L, Fx&& fx, Args&&... args);
template <bool is_yielding, bool no_trampoline, typename Fx, typename... Args>
void select_set_fx(lua_State* L, Args&&... args) {
lua_CFunction freefunc = no_trampoline ? detail::static_trampoline<function_detail::call<meta::unqualified_t<Fx>, 2, is_yielding>>
: function_detail::call<meta::unqualified_t<Fx>, 2, is_yielding>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<Fx>>(L, std::forward<Args>(args)...);
stack::push(L, c_closure(freefunc, upvalues));
}
template <bool is_yielding, typename R, typename... A, typename Fx, typename... Args>
void select_convertible(types<R(A...)>, lua_State* L, Fx&& fx, Args&&... args) {
using dFx = std::decay_t<meta::unwrap_unqualified_t<Fx>>;
using fx_ptr_t = R (*)(A...);
constexpr bool is_convertible = std::is_convertible_v<dFx, fx_ptr_t>;
if constexpr (is_convertible) {
fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx));
select<is_yielding>(L, std::move(fxptr), std::forward<Args>(args)...);
}
else {
using F = function_detail::functor_function<dFx, false, true>;
select_set_fx<is_yielding, false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
}
template <bool is_yielding, typename Fx, typename... Args>
void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args) {
typedef meta::function_signature_t<meta::unwrap_unqualified_t<Fx>> Sig;
select_convertible<is_yielding>(types<Sig>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, typename... Args>
void select_member_variable(lua_State* L, Fx&& fx, Args&&... args) {
using uFx = meta::unqualified_t<Fx>;
if constexpr (sizeof...(Args) < 1) {
using C = typename meta::bind_traits<uFx>::object_type;
lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, fx);
stack::push(L, c_closure(freefunc, upvalues));
}
else if constexpr (sizeof...(Args) < 2) {
using Tu = typename meta::meta_detail::unqualified_non_alias<Args...>::type;
constexpr bool is_reference = meta::is_specialization_of_v<Tu, std::reference_wrapper> || std::is_pointer_v<Tu>;
if constexpr (meta::is_specialization_of_v<Tu, function_detail::class_indicator>) {
lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<typename Tu::type, Fx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, fx);
stack::push(L, c_closure(freefunc, upvalues));
}
else if constexpr (is_reference) {
typedef std::decay_t<Fx> dFx;
dFx memfxptr(std::forward<Fx>(fx));
auto userptr = detail::ptr(std::forward<Args>(args)...);
lua_CFunction freefunc
= &function_detail::upvalue_member_variable<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr);
upvalues += stack::push(L, static_cast<void const*>(userptr));
stack::push(L, c_closure(freefunc, upvalues));
}
else {
using clean_fx = std::remove_pointer_t<std::decay_t<Fx>>;
using F = function_detail::member_variable<Tu, clean_fx, is_yielding>;
select_set_fx<false, false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
}
else {
using C = typename meta::bind_traits<uFx>::object_type;
using clean_fx = std::remove_pointer_t<std::decay_t<Fx>>;
using F = function_detail::member_variable<C, clean_fx, is_yielding>;
select_set_fx<false, false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
}
template <bool is_yielding, typename Fx, typename T, typename... Args>
void select_member_function_with(lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
using dFx = std::decay_t<Fx>;
using Tu = meta::unqualified_t<T>;
if constexpr (meta::is_specialization_of_v<Tu, function_detail::class_indicator>) {
(void)obj;
using C = typename Tu::type;
lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, dFx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
stack::push(L, c_closure(freefunc, upvalues));
}
else {
constexpr bool is_reference = meta::is_specialization_of_v<Tu, std::reference_wrapper> || std::is_pointer_v<Tu>;
if constexpr (is_reference) {
auto userptr = detail::ptr(std::forward<T>(obj));
lua_CFunction freefunc = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, dFx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
stack::push(L, c_closure(freefunc, upvalues));
}
else {
using F = function_detail::member_function<Tu, dFx, is_yielding>;
select_set_fx<false, false, F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
}
}
}
template <bool is_yielding, typename Fx, typename... Args>
void select_member_function(lua_State* L, Fx&& fx, Args&&... args) {
using dFx = std::decay_t<Fx>;
if constexpr (sizeof...(Args) < 1) {
using C = typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type;
lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, dFx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx));
stack::push(L, c_closure(freefunc, upvalues));
}
else {
select_member_function_with<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
}
template <bool is_yielding, typename Fx, typename... Args>
void select(lua_State* L, Fx&& fx, Args&&... args) {
using uFx = meta::unqualified_t<Fx>;
if constexpr (is_lua_reference_v<uFx>) {
// TODO: hoist into lambda in this case for yielding???
stack::push(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
else if constexpr (is_lua_c_function_v<uFx>) {
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push(L, std::forward<Fx>(fx));
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
if constexpr (std::is_nothrow_invocable_r_v<int, uFx, lua_State*>) {
detail::lua_CFunction_noexcept cf = &lua_c_noexcept_wrapper<is_yielding>;
lua_pushcclosure(L, reinterpret_cast<lua_CFunction>(cf), 2);
}
else {
lua_CFunction cf = &lua_c_wrapper<is_yielding>;
lua_pushcclosure(L, cf, 2);
}
#else
lua_CFunction cf = &function_detail::lua_c_wrapper<is_yielding>;
lua_pushcclosure(L, cf, 2);
#endif
}
else if constexpr (std::is_function_v<std::remove_pointer_t<uFx>>) {
std::decay_t<Fx> target(std::forward<Fx>(fx), std::forward<Args>(args)...);
lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, target);
stack::push(L, c_closure(freefunc, upvalues));
}
else if constexpr (std::is_member_function_pointer_v<uFx>) {
select_member_function<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
else if constexpr (meta::is_member_object_v<uFx>) {
select_member_variable<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
else {
select_convertible<is_yielding>(types<>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
}
} // namespace function_detail
namespace stack {
template <typename... Sigs>
struct unqualified_pusher<function_sig<Sigs...>> {
template <bool is_yielding, typename Arg0, typename... Args>
static int push(lua_State* L, Arg0&& arg0, Args&&... args) {
if constexpr (meta::is_specialization_of_v<meta::unqualified_t<Arg0>, std::function>) {
if constexpr (is_yielding) {
return stack::push<meta::unqualified_t<Arg0>>(L, detail::yield_tag, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
}
else {
return stack::push(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
}
}
else {
function_detail::select<is_yielding>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
return 1;
}
}
template <typename Arg0, typename... Args>
static int push(lua_State* L, Arg0&& arg0, Args&&... args) {
if constexpr (std::is_same_v<meta::unqualified_t<Arg0>, detail::yield_tag_t>) {
push<true>(L, std::forward<Args>(args)...);
}
else if constexpr (meta::is_specialization_of_v<meta::unqualified_t<Arg0>, yielding_t>) {
push<true>(L, std::forward<Arg0>(arg0).func, std::forward<Args>(args)...);
}
else {
push<false>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
}
return 1;
}
};
template <typename T>
struct unqualified_pusher<yielding_t<T>> {
template <typename... Args>
static int push(lua_State* L, const yielding_t<T>& f, Args&&... args) {
if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::function>) {
return stack::push<T>(L, detail::yield_tag, f.func, std::forward<Args>(args)...);
}
else {
function_detail::select<true>(L, f.func, std::forward<Args>(args)...);
return 1;
}
}
template <typename... Args>
static int push(lua_State* L, yielding_t<T>&& f, Args&&... args) {
if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::function>) {
return stack::push<T>(L, detail::yield_tag, std::move(f.func), std::forward<Args>(args)...);
}
else {
function_detail::select<true>(L, std::move(f.func), std::forward<Args>(args)...);
return 1;
}
}
};
template <typename T, typename... Args>
struct unqualified_pusher<function_arguments<T, Args...>> {
template <std::size_t... I, typename FP>
static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) {
return stack::push<T>(L, std::get<I>(std::forward<FP>(fp).arguments)...);
}
static int push(lua_State* L, const function_arguments<T, Args...>& fp) {
return push_func(std::make_index_sequence<sizeof...(Args)>(), L, fp);
}
static int push(lua_State* L, function_arguments<T, Args...>&& fp) {
return push_func(std::make_index_sequence<sizeof...(Args)>(), L, std::move(fp));
}
};
template <typename Signature>
struct unqualified_pusher<std::function<Signature>> {
static int push(lua_State* L, detail::yield_tag_t, const std::function<Signature>& fx) {
if (fx) {
function_detail::select<true>(L, fx);
return 1;
}
return stack::push(L, lua_nil);
}
static int push(lua_State* L, detail::yield_tag_t, std::function<Signature>&& fx) {
if (fx) {
function_detail::select<true>(L, std::move(fx));
return 1;
}
return stack::push(L, lua_nil);
}
static int push(lua_State* L, const std::function<Signature>& fx) {
if (fx) {
function_detail::select<false>(L, fx);
return 1;
}
return stack::push(L, lua_nil);
}
static int push(lua_State* L, std::function<Signature>&& fx) {
if (fx) {
function_detail::select<false>(L, std::move(fx));
return 1;
}
return stack::push(L, lua_nil);
}
};
template <typename Signature>
struct unqualified_pusher<Signature, std::enable_if_t<std::is_member_pointer<Signature>::value>> {
template <typename... Args>
static int push(lua_State* L, Args&&... args) {
function_detail::select<false>(L, std::forward<Args>(args)...);
return 1;
}
};
template <typename Signature>
struct unqualified_pusher<Signature,
std::enable_if_t<meta::all<std::is_function<std::remove_pointer_t<Signature>>, meta::neg<std::is_same<Signature, lua_CFunction>>,
meta::neg<std::is_same<Signature, std::remove_pointer_t<lua_CFunction>>>
#if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
,
meta::neg<std::is_same<Signature, detail::lua_CFunction_noexcept>>,
meta::neg<std::is_same<Signature, std::remove_pointer_t<detail::lua_CFunction_noexcept>>>
#endif // noexcept function types
>::value>> {
template <typename F>
static int push(lua_State* L, F&& f) {
function_detail::select<false>(L, std::forward<F>(f));
return 1;
}
};
template <typename... Functions>
struct unqualified_pusher<overload_set<Functions...>> {
static int push(lua_State* L, overload_set<Functions...>&& set) {
using F = function_detail::overloaded_function<0, Functions...>;
function_detail::select_set_fx<false, false, F>(L, std::move(set.functions));
return 1;
}
static int push(lua_State* L, const overload_set<Functions...>& set) {
using F = function_detail::overloaded_function<0, Functions...>;
function_detail::select_set_fx<false, false, F>(L, set.functions);
return 1;
}
};
template <typename T>
struct unqualified_pusher<protect_t<T>> {
static int push(lua_State* L, protect_t<T>&& pw) {
lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<protect_t<T>>>(L, std::move(pw.value));
return stack::push(L, c_closure(cf, upvalues));
}
static int push(lua_State* L, const protect_t<T>& pw) {
lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<protect_t<T>>>(L, pw.value);
return stack::push(L, c_closure(cf, upvalues));
}
};
template <typename F, typename G>
struct unqualified_pusher<property_wrapper<F, G>> {
static int push(lua_State* L, property_wrapper<F, G>&& pw) {
if constexpr (std::is_void_v<F>) {
return stack::push(L, std::move(pw.write()));
}
else if constexpr (std::is_void_v<G>) {
return stack::push(L, std::move(pw.read()));
}
else {
return stack::push(L, overload(std::move(pw.read()), std::move(pw.write())));
}
}
static int push(lua_State* L, const property_wrapper<F, G>& pw) {
if constexpr (std::is_void_v<F>) {
return stack::push(L, pw.write);
}
else if constexpr (std::is_void_v<G>) {
return stack::push(L, pw.read);
}
else {
return stack::push(L, overload(pw.read, pw.write));
}
}
};
template <typename T>
struct unqualified_pusher<var_wrapper<T>> {
static int push(lua_State* L, var_wrapper<T>&& vw) {
return stack::push(L, std::move(vw.value()));
}
static int push(lua_State* L, const var_wrapper<T>& vw) {
return stack::push(L, vw.value());
}
};
template <typename... Functions>
struct unqualified_pusher<factory_wrapper<Functions...>> {
static int push(lua_State* L, const factory_wrapper<Functions...>& fw) {
using F = function_detail::overloaded_function<0, Functions...>;
function_detail::select_set_fx<false, false, F>(L, fw.functions);
return 1;
}
static int push(lua_State* L, factory_wrapper<Functions...>&& fw) {
using F = function_detail::overloaded_function<0, Functions...>;
function_detail::select_set_fx<false, false, F>(L, std::move(fw.functions));
return 1;
}
static int push(lua_State* L, const factory_wrapper<Functions...>& fw, function_detail::call_indicator) {
using F = function_detail::overloaded_function<1, Functions...>;
function_detail::select_set_fx<false, false, F>(L, fw.functions);
return 1;
}
static int push(lua_State* L, factory_wrapper<Functions...>&& fw, function_detail::call_indicator) {
using F = function_detail::overloaded_function<1, Functions...>;
function_detail::select_set_fx<false, false, F>(L, std::move(fw.functions));
return 1;
}
};
template <>
struct unqualified_pusher<no_construction> {
static int push(lua_State* L, no_construction) {
lua_CFunction cf = &function_detail::no_construction_error;
return stack::push(L, cf);
}
static int push(lua_State* L, no_construction c, function_detail::call_indicator) {
return push(L, c);
}
};
template <typename T>
struct unqualified_pusher<detail::tagged<T, no_construction>> {
static int push(lua_State* L, detail::tagged<T, no_construction>) {
lua_CFunction cf = &function_detail::no_construction_error;
return stack::push(L, cf);
}
static int push(lua_State* L, no_construction c, function_detail::call_indicator) {
return push(L, c);
}
};
template <typename T, typename... Lists>
struct unqualified_pusher<detail::tagged<T, constructor_list<Lists...>>> {
static int push(lua_State* L, detail::tagged<T, constructor_list<Lists...>>) {
lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>;
return stack::push(L, cf);
}
static int push(lua_State* L, constructor_list<Lists...>) {
lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>;
return stack::push(L, cf);
}
};
template <typename L0, typename... Lists>
struct unqualified_pusher<constructor_list<L0, Lists...>> {
typedef constructor_list<L0, Lists...> cl_t;
static int push(lua_State* L, cl_t cl) {
typedef typename meta::bind_traits<L0>::return_type T;
return stack::push<detail::tagged<T, cl_t>>(L, cl);
}
};
template <typename T, typename... Fxs>
struct unqualified_pusher<detail::tagged<T, constructor_wrapper<Fxs...>>> {
static int push(lua_State* L, detail::tagged<T, constructor_wrapper<Fxs...>>&& c) {
return push(L, std::move(c.value()));
}
static int push(lua_State* L, const detail::tagged<T, const constructor_wrapper<Fxs...>>& c) {
return push(L, c.value());
}
static int push(lua_State* L, constructor_wrapper<Fxs...>&& c) {
lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, std::move(c));
return stack::push(L, c_closure(cf, upvalues));
}
static int push(lua_State* L, const constructor_wrapper<Fxs...>& c) {
lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, c);
return stack::push(L, c_closure(cf, upvalues));
}
};
template <typename F, typename... Fxs>
struct unqualified_pusher<constructor_wrapper<F, Fxs...>> {
static int push(lua_State* L, const constructor_wrapper<F, Fxs...>& c) {
typedef typename meta::bind_traits<F>::template arg_at<0> arg0;
typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T;
return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, c);
}
static int push(lua_State* L, constructor_wrapper<F, Fxs...>&& c) {
typedef typename meta::bind_traits<F>::template arg_at<0> arg0;
typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T;
return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, std::move(c));
}
};
template <typename T>
struct unqualified_pusher<detail::tagged<T, destructor_wrapper<void>>> {
static int push(lua_State* L, destructor_wrapper<void>) {
lua_CFunction cf = detail::usertype_alloc_destruct<T>;
return stack::push(L, cf);
}
};
template <typename T, typename Fx>
struct unqualified_pusher<detail::tagged<T, destructor_wrapper<Fx>>> {
static int push(lua_State* L, destructor_wrapper<Fx>&& c) {
lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c));
return stack::push(L, c_closure(cf, upvalues));
}
static int push(lua_State* L, const destructor_wrapper<Fx>& c) {
lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c);
return stack::push(L, c_closure(cf, upvalues));
}
};
template <typename Fx>
struct unqualified_pusher<destructor_wrapper<Fx>> {
static int push(lua_State* L, destructor_wrapper<Fx>&& c) {
lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c));
return stack::push(L, c_closure(cf, upvalues));
}
static int push(lua_State* L, const destructor_wrapper<Fx>& c) {
lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c);
return stack::push(L, c_closure(cf, upvalues));
}
};
template <typename F, typename... Policies>
struct unqualified_pusher<policy_wrapper<F, Policies...>> {
using P = policy_wrapper<F, Policies...>;
static int push(lua_State* L, const P& p) {
lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<P>>(L, p);
return stack::push(L, c_closure(cf, upvalues));
}
static int push(lua_State* L, P&& p) {
lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<P>>(L, std::move(p));
return stack::push(L, c_closure(cf, upvalues));
}
};
template <typename T, typename F, typename... Policies>
struct unqualified_pusher<detail::tagged<T, policy_wrapper<F, Policies...>>> {
using P = policy_wrapper<F, Policies...>;
using Tagged = detail::tagged<T, P>;
static int push(lua_State* L, const Tagged& p) {
lua_CFunction cf = call_detail::call_user<T, false, false, P, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<P>>(L, p.value());
return stack::push(L, c_closure(cf, upvalues));
}
static int push(lua_State* L, Tagged&& p) {
lua_CFunction cf = call_detail::call_user<T, false, false, P, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<P>>(L, std::move(p.value()));
return stack::push(L, c_closure(cf, upvalues));
}
};
template <typename T>
struct unqualified_pusher<push_invoke_t<T>> {
static int push(lua_State* L, push_invoke_t<T>&& pi) {
if constexpr (std::is_invocable_v<std::add_rvalue_reference_t<T>, lua_State*>) {
return stack::push(L, std::move(pi.value())(L));
}
else {
return stack::push(L, std::move(pi.value())());
}
}
static int push(lua_State* L, const push_invoke_t<T>& pi) {
if constexpr (std::is_invocable_v<const T, lua_State*>) {
return stack::push(L, pi.value()(L));
}
else {
return stack::push(L, pi.value()());
}
}
};
namespace stack_detail {
template <typename Function, typename Handler>
bool check_function_pointer(lua_State* L, int index, Handler&& handler, record& tracking) noexcept {
#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
tracking.use(1);
bool success = lua_iscfunction(L, index) == 1;
if (success) {
// there must be at LEAST 2 upvalues; otherwise, we didn't serialize it.
const char* upvalue_name = lua_getupvalue(L, index, 2);
lua_pop(L, 1);
success = upvalue_name != nullptr;
}
if (!success) {
// expected type, actual type
handler(
L, index, type::function, type_of(L, index), "type must be a Lua C Function gotten from a function pointer serialized by sol2");
}
return success;
#else
return false;
#endif
}
template <typename Function>
Function* get_function_pointer(lua_State* L, int index, record& tracking) noexcept {
#if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
tracking.use(1);
auto udata = stack::stack_detail::get_as_upvalues_using_function<Function*>(L, index);
Function* fx = udata.first;
return fx;
#else
static_assert(meta::meta_detail::always_true<Function>::value,
#if SOL_IS_DEFAULT_OFF(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
"You are attempting to retrieve a function pointer type. "
"This is inherently unsafe in sol2. In order to do this, you must turn on the "
"SOL_GET_FUNCTION_POINTER_UNSAFE configuration macro, as detailed in the documentation. "
"Please be careful!"
#else
"You are attempting to retrieve a function pointer type. "
"You explicitly turned off the ability to do this by defining "
"SOL_GET_FUNCTION_POINTER_UNSAFE or similar to be off. "
"Please reconsider this!"
#endif
);
return nullptr;
#endif
}
} // namespace stack_detail
} // namespace stack
} // namespace sol
// end of sol/function_types.hpp
// beginning of sol/dump_handler.hpp
#include <cstdint>
#include <exception>
namespace sol {
class dump_error : public error {
private:
int ec_;
public:
dump_error(int error_code_) : error("dump returned non-zero error of " + std::to_string(error_code_)), ec_(error_code_) {
}
int error_code() const {
return ec_;
}
};
inline int dump_pass_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) {
(void)L;
(void)writer_function;
(void)userdata;
(void)strip;
return result_code;
}
inline int dump_panic_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) {
(void)L;
(void)writer_function;
(void)userdata;
(void)strip;
return luaL_error(L, "a non-zero error code (%d) was returned by the lua_Writer for the dump function", result_code);
}
inline int dump_throw_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) {
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
return dump_panic_on_error(L, result_code, writer_function, userdata, strip);
#else
(void)L;
(void)writer_function;
(void)userdata;
(void)strip;
throw dump_error(result_code);
#endif // no exceptions stuff
}
} // namespace sol
// end of sol/dump_handler.hpp
#include <cstdint>
namespace sol {
template <typename ref_t, bool aligned = false>
class basic_function : public basic_object<ref_t> {
private:
using base_t = basic_object<ref_t>;
void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const {
lua_call(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount));
}
template <std::size_t... I, typename... Ret>
auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) const {
luacall(n, lua_size<std::tuple<Ret...>>::value);
return stack::pop<std::tuple<Ret...>>(lua_state());
}
template <std::size_t I, typename Ret, meta::enable<meta::neg<std::is_void<Ret>>> = meta::enabler>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) const {
luacall(n, lua_size<Ret>::value);
return stack::pop<Ret>(lua_state());
}
template <std::size_t I>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const {
luacall(n, 0);
}
unsafe_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const {
int stacksize = lua_gettop(lua_state());
int firstreturn = (std::max)(1, stacksize - static_cast<int>(n));
luacall(n, LUA_MULTRET);
int poststacksize = lua_gettop(lua_state());
int returncount = poststacksize - (firstreturn - 1);
return unsafe_function_result(lua_state(), firstreturn, returncount);
}
public:
using base_t::lua_state;
basic_function() = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_function>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_function(T&& r) noexcept
: base_t(std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
if (!is_function<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_function>(lua_state(), -1, handler);
}
#endif // Safety
}
basic_function(const basic_function&) = default;
basic_function& operator=(const basic_function&) = default;
basic_function(basic_function&&) = default;
basic_function& operator=(basic_function&&) = default;
basic_function(const stack_reference& r)
: basic_function(r.lua_state(), r.stack_index()) {
}
basic_function(stack_reference&& r)
: basic_function(r.lua_state(), r.stack_index()) {
}
basic_function(lua_nil_t n)
: base_t(n) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_function(lua_State* L, T&& r)
: base_t(L, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_function>(lua_state(), -1, handler);
#endif // Safety
}
basic_function(lua_State* L, int index = -1)
: base_t(L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler{};
stack::check<basic_function>(L, index, handler);
#endif // Safety
}
basic_function(lua_State* L, ref_index index)
: base_t(L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_function>(lua_state(), -1, handler);
#endif // Safety
}
template <typename Fx>
int dump(lua_Writer writer, void* userdata, bool strip, Fx&& on_error) const {
this->push();
auto ppn = stack::push_popper_n<false>(this->lua_state(), 1);
int r = lua_dump(this->lua_state(), writer, userdata, strip ? 1 : 0);
if (r != 0) {
return on_error(this->lua_state(), r, writer, userdata, strip);
}
return r;
}
int dump(lua_Writer writer, void* userdata, bool strip = false) const {
return dump(writer, userdata, strip, &dump_throw_on_error);
}
template <typename Container = bytecode>
Container dump() const {
Container bc;
(void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, &dump_panic_on_error);
return bc;
}
template <typename Container = bytecode, typename Fx>
Container dump(Fx&& on_error) const {
Container bc;
(void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, std::forward<Fx>(on_error));
return bc;
}
template <typename... Args>
unsafe_function_result operator()(Args&&... args) const {
return call<>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) operator()(types<Ret...>, Args&&... args) const {
return call<Ret...>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) const {
if (!aligned) {
base_t::push();
}
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), static_cast<std::ptrdiff_t>(pushcount));
}
};
} // namespace sol
// end of sol/unsafe_function.hpp
// beginning of sol/protected_function.hpp
// beginning of sol/protected_handler.hpp
#include <cstdint>
namespace sol {
namespace detail {
inline const char(&default_handler_name())[9]{
static const char name[9] = "sol.\xF0\x9F\x94\xA9";
return name;
}
template <bool b, typename target_t = reference>
struct protected_handler {
typedef is_stack_based<target_t> is_stack;
const target_t& target;
int stackindex;
protected_handler(std::false_type, const target_t& target)
: target(target), stackindex(0) {
if (b) {
stackindex = lua_gettop(target.lua_state()) + 1;
target.push();
}
}
protected_handler(std::true_type, const target_t& target)
: target(target), stackindex(0) {
if (b) {
stackindex = target.stack_index();
}
}
protected_handler(const target_t& target)
: protected_handler(is_stack(), target) {
}
bool valid() const noexcept {
return b;
}
~protected_handler() {
if constexpr (!is_stack::value) {
if (stackindex != 0) {
lua_remove(target.lua_state(), stackindex);
}
}
}
};
template <typename base_t, typename T>
basic_function<base_t> force_cast(T& p) {
return p;
}
template <typename Reference, bool is_main_ref = false>
static Reference get_default_handler(lua_State* L) {
if (is_stack_based<Reference>::value || L == nullptr)
return Reference(L, lua_nil);
L = is_main_ref ? main_thread(L, L) : L;
lua_getglobal(L, default_handler_name());
auto pp = stack::pop_n(L, 1);
return Reference(L, -1);
}
template <typename T>
static void set_default_handler(lua_State* L, const T& ref) {
if (L == nullptr) {
return;
}
if (!ref.valid()) {
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushnil(L);
lua_setglobal(L, default_handler_name());
}
else {
ref.push(L);
lua_setglobal(L, default_handler_name());
}
}
} // namespace detail
} // namespace sol
// end of sol/protected_handler.hpp
#include <cstdint>
#include <algorithm>
namespace sol {
namespace detail {
template <bool b, typename handler_t>
inline void handle_protected_exception(lua_State* L, optional<const std::exception&> maybe_ex, const char* error, detail::protected_handler<b, handler_t>& h) {
h.stackindex = 0;
if (b) {
h.target.push();
detail::call_exception_handler(L, maybe_ex, error);
lua_call(L, 1, 1);
}
else {
detail::call_exception_handler(L, maybe_ex, error);
}
}
}
template <typename ref_t, bool aligned = false, typename handler_t = reference>
class basic_protected_function : public basic_object<ref_t> {
private:
using base_t = basic_object<ref_t>;
public:
using is_stack_handler = is_stack_based<handler_t>;
static handler_t get_default_handler(lua_State* L) {
return detail::get_default_handler<handler_t, is_main_threaded<base_t>::value>(L);
}
template <typename T>
static void set_default_handler(const T& ref) {
detail::set_default_handler(ref.lua_state(), ref);
}
private:
template <bool b>
call_status luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, detail::protected_handler<b, handler_t>& h) const {
return static_cast<call_status>(lua_pcall(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), h.stackindex));
}
template <std::size_t... I, bool b, typename... Ret>
auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
luacall(n, sizeof...(Ret), h);
return stack::pop<std::tuple<Ret...>>(lua_state());
}
template <std::size_t I, bool b, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
luacall(n, 1, h);
return stack::pop<Ret>(lua_state());
}
template <std::size_t I, bool b>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
luacall(n, 0, h);
}
template <bool b>
protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
int stacksize = lua_gettop(lua_state());
int poststacksize = stacksize;
int firstreturn = 1;
int returncount = 0;
call_status code = call_status::ok;
#if !defined(SOL_NO_EXCEPTIONS) || !SOL_NO_EXCEPTIONS
#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT)
try {
#endif // Safe Exception Propagation
#endif // No Exceptions
firstreturn = (std::max)(1, static_cast<int>(stacksize - n - static_cast<int>(h.valid() && !is_stack_handler::value)));
code = luacall(n, LUA_MULTRET, h);
poststacksize = lua_gettop(lua_state()) - static_cast<int>(h.valid() && !is_stack_handler::value);
returncount = poststacksize - (firstreturn - 1);
#ifndef SOL_NO_EXCEPTIONS
#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT)
}
// Handle C++ errors thrown from C++ functions bound inside of lua
catch (const char* error) {
detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), error, h);
firstreturn = lua_gettop(lua_state());
return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
}
catch (const std::string& error) {
detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), error.c_str(), h);
firstreturn = lua_gettop(lua_state());
return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
}
catch (const std::exception& error) {
detail::handle_protected_exception(lua_state(), optional<const std::exception&>(error), error.what(), h);
firstreturn = lua_gettop(lua_state());
return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
}
#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION)
// LuaJIT cannot have the catchall when the safe propagation is on
// but LuaJIT will swallow all C++ errors
// if we don't at least catch std::exception ones
catch (...) {
detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), detail::protected_function_error, h);
firstreturn = lua_gettop(lua_state());
return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
}
#endif // LuaJIT
#else
// do not handle exceptions: they can be propogated into C++ and keep all type information / rich information
#endif // Safe Exception Propagation
#endif // Exceptions vs. No Exceptions
return protected_function_result(lua_state(), firstreturn, returncount, returncount, code);
}
public:
using base_t::lua_state;
handler_t error_handler;
basic_protected_function() = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_protected_function>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_protected_function(T&& r) noexcept
: base_t(std::forward<T>(r)), error_handler(get_default_handler(r.lua_state())) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
if (!is_function<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_protected_function>(lua_state(), -1, handler);
}
#endif // Safety
}
basic_protected_function(const basic_protected_function&) = default;
basic_protected_function& operator=(const basic_protected_function&) = default;
basic_protected_function(basic_protected_function&&) = default;
basic_protected_function& operator=(basic_protected_function&&) = default;
basic_protected_function(const basic_function<base_t>& b)
: basic_protected_function(b, get_default_handler(b.lua_state())) {
}
basic_protected_function(basic_function<base_t>&& b)
: basic_protected_function(std::move(b), get_default_handler(b.lua_state())) {
}
basic_protected_function(const basic_function<base_t>& b, handler_t eh)
: base_t(b), error_handler(std::move(eh)) {
}
basic_protected_function(basic_function<base_t>&& b, handler_t eh)
: base_t(std::move(b)), error_handler(std::move(eh)) {
}
basic_protected_function(const stack_reference& r)
: basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) {
}
basic_protected_function(stack_reference&& r)
: basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) {
}
basic_protected_function(const stack_reference& r, handler_t eh)
: basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {
}
basic_protected_function(stack_reference&& r, handler_t eh)
: basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {
}
template <typename Super>
basic_protected_function(const proxy_base<Super>& p)
: basic_protected_function(p, get_default_handler(p.lua_state())) {
}
template <typename Super>
basic_protected_function(proxy_base<Super>&& p)
: basic_protected_function(std::move(p), get_default_handler(p.lua_state())) {
}
template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler>
basic_protected_function(Proxy&& p, Handler&& eh)
: basic_protected_function(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_protected_function(lua_State* L, T&& r)
: basic_protected_function(L, std::forward<T>(r), get_default_handler(L)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_protected_function(lua_State* L, T&& r, handler_t eh)
: base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_protected_function>(lua_state(), -1, handler);
#endif // Safety
}
basic_protected_function(lua_nil_t n)
: base_t(n), error_handler(n) {
}
basic_protected_function(lua_State* L, int index = -1)
: basic_protected_function(L, index, get_default_handler(L)) {
}
basic_protected_function(lua_State* L, int index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler{};
stack::check<basic_protected_function>(L, index, handler);
#endif // Safety
}
basic_protected_function(lua_State* L, absolute_index index)
: basic_protected_function(L, index, get_default_handler(L)) {
}
basic_protected_function(lua_State* L, absolute_index index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler{};
stack::check<basic_protected_function>(L, index, handler);
#endif // Safety
}
basic_protected_function(lua_State* L, raw_index index)
: basic_protected_function(L, index, get_default_handler(L)) {
}
basic_protected_function(lua_State* L, raw_index index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler{};
stack::check<basic_protected_function>(L, index, handler);
#endif // Safety
}
basic_protected_function(lua_State* L, ref_index index)
: basic_protected_function(L, index, get_default_handler(L)) {
}
basic_protected_function(lua_State* L, ref_index index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_protected_function>(lua_state(), -1, handler);
#endif // Safety
}
template <typename Fx>
int dump(lua_Writer writer, void* userdata, bool strip, Fx&& on_error) const {
this->push();
auto ppn = stack::push_popper_n<false>(this->lua_state(), 1);
int r = lua_dump(this->lua_state(), writer, userdata, strip ? 1 : 0);
if (r != 0) {
return on_error(this->lua_state(), r, writer, userdata, strip);
}
return r;
}
int dump(lua_Writer writer, void* userdata, bool strip = false) const {
return dump(writer, userdata, strip, &dump_pass_on_error);
}
template <typename Container = bytecode>
Container dump() const {
Container bc;
(void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, &dump_throw_on_error);
return bc;
}
template <typename Container = bytecode, typename Fx>
Container dump(Fx&& on_error) const {
Container bc;
(void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, std::forward<Fx>(on_error));
return bc;
}
template <typename... Args>
protected_function_result operator()(Args&&... args) const {
return call<>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) operator()(types<Ret...>, Args&&... args) const {
return call<Ret...>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) const {
if constexpr (!aligned) {
// we do not expect the function to already be on the stack: push it
if (error_handler.valid()) {
detail::protected_handler<true, handler_t> h(error_handler);
base_t::push();
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
}
else {
detail::protected_handler<false, handler_t> h(error_handler);
base_t::push();
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
}
}
else {
// the function is already on the stack at the right location
if (error_handler.valid()) {
// the handler will be pushed onto the stack manually,
// since it's not already on the stack this means we need to push our own
// function on the stack too and swap things to be in-place
if constexpr (!is_stack_handler::value) {
// so, we need to remove the function at the top and then dump the handler out ourselves
base_t::push();
}
detail::protected_handler<true, handler_t> h(error_handler);
if constexpr (!is_stack_handler::value) {
lua_replace(lua_state(), -3);
h.stackindex = lua_absindex(lua_state(), -2);
}
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
}
else {
detail::protected_handler<false, handler_t> h(error_handler);
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
}
}
}
};
} // namespace sol
// end of sol/protected_function.hpp
#include <functional>
namespace sol {
template <typename... Ret, typename... Args>
decltype(auto) stack_proxy::call(Args&&... args) {
stack_function sf(this->lua_state(), this->stack_index());
return sf.template call<Ret...>(std::forward<Args>(args)...);
}
inline protected_function_result::protected_function_result(unsafe_function_result&& o) noexcept
: L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()), popcount(o.return_count()), err(o.status()) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
}
inline protected_function_result& protected_function_result::operator=(unsafe_function_result&& o) noexcept {
L = o.lua_state();
index = o.stack_index();
returncount = o.return_count();
popcount = o.return_count();
err = o.status();
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
return *this;
}
inline unsafe_function_result::unsafe_function_result(protected_function_result&& o) noexcept
: L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
}
inline unsafe_function_result& unsafe_function_result::operator=(protected_function_result&& o) noexcept {
L = o.lua_state();
index = o.stack_index();
returncount = o.return_count();
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
return *this;
}
namespace detail {
template <typename... R>
struct std_shim {
unsafe_function lua_func_;
std_shim(unsafe_function lua_func) : lua_func_(std::move(lua_func)) {
}
template <typename... Args>
meta::return_type_t<R...> operator()(Args&&... args) {
return lua_func_.call<R...>(std::forward<Args>(args)...);
}
};
template <>
struct std_shim<void> {
unsafe_function lua_func_;
std_shim(unsafe_function lua_func) : lua_func_(std::move(lua_func)) {
}
template <typename... Args>
void operator()(Args&&... args) {
lua_func_.call<void>(std::forward<Args>(args)...);
}
};
} // namespace detail
namespace stack {
template <typename Signature>
struct unqualified_getter<std::function<Signature>> {
typedef meta::bind_traits<Signature> fx_t;
typedef typename fx_t::args_list args_lists;
typedef meta::tuple_types<typename fx_t::return_type> return_types;
template <typename... R>
static std::function<Signature> get_std_func(types<R...>, lua_State* L, int index) {
detail::std_shim<R...> fx(unsafe_function(L, index));
return fx;
}
static std::function<Signature> get(lua_State* L, int index, record& tracking) {
tracking.use(1);
type t = type_of(L, index);
if (t == type::none || t == type::lua_nil) {
return nullptr;
}
return get_std_func(return_types(), L, index);
}
};
template <typename Allocator>
struct unqualified_getter<basic_bytecode<Allocator>> {
static basic_bytecode<Allocator> get(lua_State* L, int index, record& tracking) {
tracking.use(1);
stack_function sf(L, index);
return sf.dump(&dump_panic_on_error);
}
};
} // namespace stack
} // namespace sol
// end of sol/function.hpp
// beginning of sol/usertype.hpp
// beginning of sol/usertype_core.hpp
// beginning of sol/deprecate.hpp
#ifndef SOL_DEPRECATED
#ifdef _MSC_VER
#define SOL_DEPRECATED __declspec(deprecated)
#elif __GNUC__
#define SOL_DEPRECATED __attribute__((deprecated))
#else
#define SOL_DEPRECATED [[deprecated]]
#endif // compilers
#endif // SOL_DEPRECATED
namespace sol {
namespace detail {
template <typename T>
struct SOL_DEPRECATED deprecate_type {
using type = T;
};
}
} // namespace sol::detail
// end of sol/deprecate.hpp
// beginning of sol/usertype_container_launch.hpp
// beginning of sol/usertype_container.hpp
namespace sol {
template <typename T>
struct usertype_container;
namespace container_detail {
template <typename T>
struct has_clear_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::clear));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_empty_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::empty));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_erase_after_test {
private:
template <typename C>
static meta::sfinae_yes_t test(
decltype(std::declval<C>().erase_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>()))*);
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T, typename = void>
struct has_find_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_find_test<T, std::enable_if_t<meta::is_lookup<T>::value>> {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::key_type>>()))*);
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_erase_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(std::declval<C>().erase(std::declval<typename C::iterator>()))*);
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_erase_key_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(std::declval<C>().erase(std::declval<typename C::key_type>()))*);
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_find_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::find));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_index_of_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::index_of));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_insert_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::insert));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_erase_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::erase));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_index_set_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::index_set));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_index_get_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::index_get));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_set_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::set));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_get_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::get));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_at_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::at));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_pairs_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::pairs));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_ipairs_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::ipairs));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_next_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::next));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_add_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::add));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
struct has_traits_size_test {
private:
template <typename C>
static meta::sfinae_yes_t test(decltype(&C::size));
template <typename C>
static meta::sfinae_no_t test(...);
public:
static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
};
template <typename T>
using has_clear = meta::boolean<has_clear_test<T>::value>;
template <typename T>
using has_empty = meta::boolean<has_empty_test<T>::value>;
template <typename T>
using has_find = meta::boolean<has_find_test<T>::value>;
template <typename T>
using has_erase = meta::boolean<has_erase_test<T>::value>;
template <typename T>
using has_erase_key = meta::boolean<has_erase_key_test<T>::value>;
template <typename T>
using has_erase_after = meta::boolean<has_erase_after_test<T>::value>;
template <typename T>
using has_traits_get = meta::boolean<has_traits_get_test<T>::value>;
template <typename T>
using has_traits_at = meta::boolean<has_traits_at_test<T>::value>;
template <typename T>
using has_traits_set = meta::boolean<has_traits_set_test<T>::value>;
template <typename T>
using has_traits_index_get = meta::boolean<has_traits_index_get_test<T>::value>;
template <typename T>
using has_traits_index_set = meta::boolean<has_traits_index_set_test<T>::value>;
template <typename T>
using has_traits_pairs = meta::boolean<has_traits_pairs_test<T>::value>;
template <typename T>
using has_traits_ipairs = meta::boolean<has_traits_ipairs_test<T>::value>;
template <typename T>
using has_traits_next = meta::boolean<has_traits_next_test<T>::value>;
template <typename T>
using has_traits_add = meta::boolean<has_traits_add_test<T>::value>;
template <typename T>
using has_traits_size = meta::boolean<has_traits_size_test<T>::value>;
template <typename T>
using has_traits_clear = has_clear<T>;
template <typename T>
using has_traits_empty = has_empty<T>;
template <typename T>
using has_traits_find = meta::boolean<has_traits_find_test<T>::value>;
template <typename T>
using has_traits_index_of = meta::boolean<has_traits_index_of_test<T>::value>;
template <typename T>
using has_traits_insert = meta::boolean<has_traits_insert_test<T>::value>;
template <typename T>
using has_traits_erase = meta::boolean<has_traits_erase_test<T>::value>;
template <typename T>
struct is_forced_container : is_container<T> {};
template <typename T>
struct is_forced_container<as_container_t<T>> : std::true_type {};
template <typename T>
struct container_decay {
typedef T type;
};
template <typename T>
struct container_decay<as_container_t<T>> {
typedef T type;
};
template <typename T>
using container_decay_t = typename container_decay<meta::unqualified_t<T>>::type;
template <typename T>
decltype(auto) get_key(std::false_type, T&& t) {
return std::forward<T>(t);
}
template <typename T>
decltype(auto) get_key(std::true_type, T&& t) {
return t.first;
}
template <typename T>
decltype(auto) get_value(std::false_type, T&& t) {
return std::forward<T>(t);
}
template <typename T>
decltype(auto) get_value(std::true_type, T&& t) {
return t.second;
}
template <typename X, typename = void>
struct usertype_container_default {
private:
typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T;
public:
typedef lua_nil_t iterator;
typedef lua_nil_t value_type;
static int at(lua_State* L) {
return luaL_error(L, "sol: cannot call 'at(index)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int get(lua_State* L) {
return luaL_error(L, "sol: cannot call 'get(key)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int index_get(lua_State* L) {
return luaL_error(L, "sol: cannot call 'container[key]' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int set(lua_State* L) {
return luaL_error(L, "sol: cannot call 'set(key, value)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int index_set(lua_State* L) {
return luaL_error(
L, "sol: cannot call 'container[key] = value' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int add(lua_State* L) {
return luaL_error(L, "sol: cannot call 'add' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int insert(lua_State* L) {
return luaL_error(L, "sol: cannot call 'insert' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int find(lua_State* L) {
return luaL_error(L, "sol: cannot call 'find' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int index_of(lua_State* L) {
return luaL_error(L, "sol: cannot call 'index_of' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int size(lua_State* L) {
return luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int clear(lua_State* L) {
return luaL_error(L, "sol: cannot call 'clear' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int empty(lua_State* L) {
return luaL_error(L, "sol: cannot call 'empty' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int erase(lua_State* L) {
return luaL_error(L, "sol: cannot call 'erase' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int next(lua_State* L) {
return luaL_error(L, "sol: cannot call 'next' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int pairs(lua_State* L) {
return luaL_error(L, "sol: cannot call '__pairs/pairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int ipairs(lua_State* L) {
return luaL_error(L, "sol: cannot call '__ipairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static iterator begin(lua_State* L, T&) {
luaL_error(L, "sol: cannot call 'being' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
return lua_nil;
}
static iterator end(lua_State* L, T&) {
luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
return lua_nil;
}
};
template <typename X>
struct usertype_container_default<X,
std::enable_if_t<meta::all<is_forced_container<meta::unqualified_t<X>>, meta::has_value_type<meta::unqualified_t<container_decay_t<X>>>,
meta::has_iterator<meta::unqualified_t<container_decay_t<X>>>>::value>> {
private:
using T = std::remove_pointer_t<meta::unwrap_unqualified_t<container_decay_t<X>>>;
private:
using deferred_uc = usertype_container<X>;
using is_associative = meta::is_associative<T>;
using is_lookup = meta::is_lookup<T>;
using is_ordered = meta::is_ordered<T>;
using is_matched_lookup = meta::is_matched_lookup<T>;
using iterator = typename T::iterator;
using value_type = typename T::value_type;
typedef meta::conditional_t<is_matched_lookup::value, std::pair<value_type, value_type>,
meta::conditional_t<is_associative::value || is_lookup::value, value_type, std::pair<std::ptrdiff_t, value_type>>>
KV;
typedef typename KV::first_type K;
typedef typename KV::second_type V;
typedef meta::conditional_t<is_matched_lookup::value, std::ptrdiff_t, K> next_K;
typedef decltype(*std::declval<iterator&>()) iterator_return;
typedef meta::conditional_t<is_associative::value || is_matched_lookup::value, std::add_lvalue_reference_t<V>,
meta::conditional_t<is_lookup::value, V, iterator_return>>
captured_type;
typedef typename meta::iterator_tag<iterator>::type iterator_category;
typedef std::is_same<iterator_category, std::input_iterator_tag> is_input_iterator;
typedef meta::conditional_t<is_input_iterator::value, V, decltype(detail::deref_move_only(std::declval<captured_type>()))> push_type;
typedef std::is_copy_assignable<V> is_copyable;
typedef meta::neg<meta::any<std::is_const<V>, std::is_const<std::remove_reference_t<iterator_return>>, meta::neg<is_copyable>>> is_writable;
typedef meta::unqualified_t<decltype(get_key(is_associative(), std::declval<std::add_lvalue_reference_t<value_type>>()))> key_type;
typedef meta::all<std::is_integral<K>, meta::neg<meta::any<is_associative, is_lookup>>> is_linear_integral;
struct iter {
T& source;
iterator it;
std::size_t i;
iter(T& source, iterator it) : source(source), it(std::move(it)), i(0) {
}
~iter() {
}
};
static auto& get_src(lua_State* L) {
#if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
auto p = stack::unqualified_check_get<T*>(L, 1);
if (!p) {
luaL_error(L,
"sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)",
detail::demangle<T>().c_str());
}
if (p.value() == nullptr) {
luaL_error(
L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str());
}
return *p.value();
#else
return stack::unqualified_get<T>(L, 1);
#endif // Safe getting with error
}
static detail::error_result at_category(std::input_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) {
pos += deferred_uc::index_adjustment(L, self);
if (pos < 0) {
return stack::push(L, lua_nil);
}
auto it = deferred_uc::begin(L, self);
auto e = deferred_uc::end(L, self);
if (it == e) {
return stack::push(L, lua_nil);
}
while (pos > 0) {
--pos;
++it;
if (it == e) {
return stack::push(L, lua_nil);
}
}
return get_associative(is_associative(), L, it);
}
static detail::error_result at_category(std::random_access_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) {
std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
pos += deferred_uc::index_adjustment(L, self);
if (pos < 0 || pos >= len) {
return stack::push(L, lua_nil);
}
auto it = std::next(deferred_uc::begin(L, self), pos);
return get_associative(is_associative(), L, it);
}
static detail::error_result at_start(lua_State* L, T& self, std::ptrdiff_t pos) {
return at_category(iterator_category(), L, self, pos);
}
template <typename Iter>
static detail::error_result get_associative(std::true_type, lua_State* L, Iter& it) {
decltype(auto) v = *it;
return stack::stack_detail::push_reference<push_type>(L, detail::deref_move_only(v.second));
}
template <typename Iter>
static detail::error_result get_associative(std::false_type, lua_State* L, Iter& it) {
return stack::stack_detail::push_reference<push_type>(L, detail::deref_move_only(*it));
}
static detail::error_result get_category(std::input_iterator_tag, lua_State* L, T& self, K& key) {
key += deferred_uc::index_adjustment(L, self);
if (key < 0) {
return stack::push(L, lua_nil);
}
auto it = deferred_uc::begin(L, self);
auto e = deferred_uc::end(L, self);
if (it == e) {
return stack::push(L, lua_nil);
}
while (key > 0) {
--key;
++it;
if (it == e) {
return stack::push(L, lua_nil);
}
}
return get_associative(is_associative(), L, it);
}
static detail::error_result get_category(std::random_access_iterator_tag, lua_State* L, T& self, K& key) {
std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
key += deferred_uc::index_adjustment(L, self);
if (key < 0 || key >= len) {
return stack::push(L, lua_nil);
}
auto it = std::next(deferred_uc::begin(L, self), key);
return get_associative(is_associative(), L, it);
}
static detail::error_result get_it(std::true_type, lua_State* L, T& self, K& key) {
return get_category(iterator_category(), L, self, key);
}
static detail::error_result get_comparative(std::true_type, lua_State* L, T& self, K& key) {
auto fx = [&](const value_type& r) -> bool { return key == get_key(is_associative(), r); };
auto e = deferred_uc::end(L, self);
auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx));
if (it == e) {
return stack::push(L, lua_nil);
}
return get_associative(is_associative(), L, it);
}
static detail::error_result get_comparative(std::false_type, lua_State*, T&, K&) {
return detail::error_result("cannot get this key on '%s': no suitable way to increment iterator and compare to key value '%s'",
detail::demangle<T>().data(),
detail::demangle<K>().data());
}
static detail::error_result get_it(std::false_type, lua_State* L, T& self, K& key) {
return get_comparative(meta::supports_op_equal<K, key_type>(), L, self, key);
}
static detail::error_result set_associative(std::true_type, iterator& it, stack_object value) {
decltype(auto) v = *it;
v.second = value.as<V>();
return {};
}
static detail::error_result set_associative(std::false_type, iterator& it, stack_object value) {
decltype(auto) v = *it;
v = value.as<V>();
return {};
}
static detail::error_result set_writable(std::true_type, lua_State*, T&, iterator& it, stack_object value) {
return set_associative(is_associative(), it, std::move(value));
}
static detail::error_result set_writable(std::false_type, lua_State*, T&, iterator&, stack_object) {
return detail::error_result(
"cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data());
}
static detail::error_result set_category(std::input_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) {
decltype(auto) key = okey.as<K>();
key += deferred_uc::index_adjustment(L, self);
auto e = deferred_uc::end(L, self);
auto it = deferred_uc::begin(L, self);
auto backit = it;
for (; key > 0 && it != e; --key, ++it) {
backit = it;
}
if (it == e) {
if (key == 0) {
return add_copyable(is_copyable(), L, self, std::move(value), meta::has_insert_after<T>::value ? backit : it);
}
return detail::error_result("out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
}
return set_writable(is_writable(), L, self, it, std::move(value));
}
static detail::error_result set_category(std::random_access_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) {
decltype(auto) key = okey.as<K>();
key += deferred_uc::index_adjustment(L, self);
if (key < 0) {
return detail::error_result("sol: out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str());
}
std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
if (key == len) {
return add_copyable(is_copyable(), L, self, std::move(value));
}
else if (key >= len) {
return detail::error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
}
auto it = std::next(deferred_uc::begin(L, self), key);
return set_writable(is_writable(), L, self, it, std::move(value));
}
static detail::error_result set_comparative(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) {
decltype(auto) key = okey.as<K>();
if (!is_writable::value) {
return detail::error_result(
"cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data());
}
auto fx = [&](const value_type& r) -> bool { return key == get_key(is_associative(), r); };
auto e = deferred_uc::end(L, self);
auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx));
if (it == e) {
return {};
}
return set_writable(is_writable(), L, self, it, std::move(value));
}
static detail::error_result set_comparative(std::false_type, lua_State*, T&, stack_object, stack_object) {
return detail::error_result("cannot set this value on '%s': no suitable way to increment iterator or compare to '%s' key",
detail::demangle<T>().data(),
detail::demangle<K>().data());
}
template <typename Iter>
static detail::error_result set_associative_insert(std::true_type, lua_State*, T& self, Iter& it, K& key, stack_object value) {
if constexpr (meta::has_insert<T>::value) {
self.insert(it, value_type(key, value.as<V>()));
return {};
}
else {
(void)self;
(void)it;
(void)key;
return detail::error_result(
"cannot call 'set' on '%s': there is no 'insert' function on this associative type", detail::demangle<T>().c_str());
}
}
template <typename Iter>
static detail::error_result set_associative_insert(std::false_type, lua_State*, T& self, Iter& it, K& key, stack_object) {
if constexpr (meta::has_insert<T>::value) {
self.insert(it, key);
return {};
}
else {
(void)self;
(void)it;
(void)key;
return detail::error_result(
"cannot call 'set' on '%s': there is no 'insert' function on this non-associative type", detail::demangle<T>().c_str());
}
}
static detail::error_result set_associative_find(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) {
decltype(auto) key = okey.as<K>();
auto it = self.find(key);
if (it == deferred_uc::end(L, self)) {
return set_associative_insert(is_associative(), L, self, it, key, std::move(value));
}
return set_writable(is_writable(), L, self, it, std::move(value));
}
static detail::error_result set_associative_find(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) {
return set_comparative(meta::supports_op_equal<K, key_type>(), L, self, std::move(key), std::move(value));
}
static detail::error_result set_it(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) {
return set_category(iterator_category(), L, self, std::move(key), std::move(value));
}
static detail::error_result set_it(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) {
return set_associative_find(meta::all<has_find<T>, meta::any<is_associative, is_lookup>>(), L, self, std::move(key), std::move(value));
}
template <bool idx_of = false>
static detail::error_result find_has_associative_lookup(std::true_type, lua_State* L, T& self) {
if constexpr (!is_ordered::value && idx_of) {
(void)L;
(void)self;
return detail::error_result("cannot perform an 'index_of': '%s's is not an ordered container", detail::demangle<T>().data());
}
else {
decltype(auto) key = stack::unqualified_get<K>(L, 2);
auto it = self.find(key);
if (it == deferred_uc::end(L, self)) {
return stack::push(L, lua_nil);
}
if constexpr (idx_of) {
auto dist = std::distance(deferred_uc::begin(L, self), it);
dist -= deferred_uc::index_adjustment(L, self);
return stack::push(L, dist);
}
else {
return get_associative(is_associative(), L, it);
}
}
}
template <bool idx_of = false>
static detail::error_result find_has_associative_lookup(std::false_type, lua_State* L, T& self) {
if constexpr (!is_ordered::value && idx_of) {
(void)L;
(void)self;
return detail::error_result("cannot perform an 'index_of': '%s's is not an ordered container", detail::demangle<T>().data());
}
else {
decltype(auto) value = stack::unqualified_get<V>(L, 2);
auto it = self.find(value);
if (it == deferred_uc::end(L, self)) {
return stack::push(L, lua_nil);
}
if constexpr (idx_of) {
auto dist = std::distance(deferred_uc::begin(L, self), it);
dist -= deferred_uc::index_adjustment(L, self);
return stack::push(L, dist);
}
else {
return get_associative(is_associative(), L, it);
}
}
}
template <bool idx_of = false>
static detail::error_result find_has(std::true_type, lua_State* L, T& self) {
return find_has_associative_lookup<idx_of>(meta::any<is_lookup, is_associative>(), L, self);
}
template <typename Iter>
static detail::error_result find_associative_lookup(std::true_type, lua_State* L, T&, Iter& it, std::size_t) {
return get_associative(is_associative(), L, it);
}
template <typename Iter>
static detail::error_result find_associative_lookup(std::false_type, lua_State* L, T& self, Iter&, std::size_t idx) {
idx -= deferred_uc::index_adjustment(L, self);
return stack::push(L, idx);
}
template <bool = false>
static detail::error_result find_comparative(std::false_type, lua_State*, T&) {
return detail::error_result("cannot call 'find' on '%s': there is no 'find' function and the value_type is not equality comparable",
detail::demangle<T>().c_str());
}
template <bool idx_of = false>
static detail::error_result find_comparative(std::true_type, lua_State* L, T& self) {
decltype(auto) value = stack::unqualified_get<V>(L, 2);
auto it = deferred_uc::begin(L, self);
auto e = deferred_uc::end(L, self);
std::size_t idx = 0;
for (;; ++it, ++idx) {
if (it == e) {
return stack::push(L, lua_nil);
}
if (value == get_value(is_associative(), *it)) {
break;
}
}
return find_associative_lookup(meta::all<meta::boolean<!idx_of>, meta::any<is_lookup, is_associative>>(), L, self, it, idx);
}
template <bool idx_of = false>
static detail::error_result find_has(std::false_type, lua_State* L, T& self) {
return find_comparative<idx_of>(meta::supports_op_equal<V>(), L, self);
}
template <typename Iter>
static detail::error_result add_insert_after(std::false_type, lua_State* L, T& self, stack_object value, Iter&) {
return add_insert_after(std::false_type(), L, self, value);
}
static detail::error_result add_insert_after(std::false_type, lua_State*, T&, stack_object) {
return detail::error_result("cannot call 'add' on type '%s': no suitable insert/push_back C++ functions", detail::demangle<T>().data());
}
template <typename Iter>
static detail::error_result add_insert_after(std::true_type, lua_State*, T& self, stack_object value, Iter& pos) {
self.insert_after(pos, value.as<V>());
return {};
}
static detail::error_result add_insert_after(std::true_type, lua_State* L, T& self, stack_object value) {
auto backit = self.before_begin();
{
auto e = deferred_uc::end(L, self);
for (auto it = deferred_uc::begin(L, self); it != e; ++backit, ++it) {
}
}
return add_insert_after(std::true_type(), L, self, value, backit);
}
template <typename Iter>
static detail::error_result add_insert(std::true_type, lua_State*, T& self, stack_object value, Iter& pos) {
self.insert(pos, value.as<V>());
return {};
}
static detail::error_result add_insert(std::true_type, lua_State* L, T& self, stack_object value) {
auto pos = deferred_uc::end(L, self);
return add_insert(std::true_type(), L, self, value, pos);
}
template <typename Iter>
static detail::error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) {
return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value), pos);
}
static detail::error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value) {
return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value));
}
template <typename Iter>
static detail::error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value, Iter&) {
self.push_back(value.as<V>());
return {};
}
static detail::error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value) {
self.push_back(value.as<V>());
return {};
}
template <typename Iter>
static detail::error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) {
return add_insert(meta::has_insert<T>(), L, self, value, pos);
}
static detail::error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value) {
return add_insert(meta::has_insert<T>(), L, self, value);
}
template <typename Iter>
static detail::error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key, Iter& pos) {
if constexpr (meta::has_insert<T>::value) {
self.insert(pos, value_type(key.as<K>(), stack::unqualified_get<V>(L, 3)));
return {};
}
else {
(void)L;
(void)self;
(void)key;
(void)pos;
return detail::error_result(
"cannot call 'insert' on '%s': there is no 'insert' function on this associative type", detail::demangle<T>().c_str());
}
}
static detail::error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key) {
auto pos = deferred_uc::end(L, self);
return add_associative(std::true_type(), L, self, std::move(key), pos);
}
template <typename Iter>
static detail::error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) {
return add_push_back(meta::has_push_back<T>(), L, self, value, pos);
}
static detail::error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value) {
return add_push_back(meta::has_push_back<T>(), L, self, value);
}
template <typename Iter>
static detail::error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value, Iter& pos) {
return add_associative(is_associative(), L, self, std::move(value), pos);
}
static detail::error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value) {
return add_associative(is_associative(), L, self, value);
}
template <typename Iter>
static detail::error_result add_copyable(std::false_type, lua_State* L, T& self, stack_object value, Iter&) {
return add_copyable(std::false_type(), L, self, std::move(value));
}
static detail::error_result add_copyable(std::false_type, lua_State*, T&, stack_object) {
return detail::error_result("cannot call 'add' on '%s': value_type is non-copyable", detail::demangle<T>().data());
}
static detail::error_result insert_lookup(std::true_type, lua_State* L, T& self, stack_object, stack_object value) {
// TODO: should we warn or error about someone calling insert on an ordered / lookup container with no associativity?
return add_copyable(std::true_type(), L, self, std::move(value));
}
static detail::error_result insert_lookup(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) {
auto it = deferred_uc::begin(L, self);
auto key = where.as<K>();
key += deferred_uc::index_adjustment(L, self);
std::advance(it, key);
self.insert(it, value.as<V>());
return {};
}
static detail::error_result insert_after_has(std::true_type, lua_State* L, T& self, stack_object where, stack_object value) {
auto key = where.as<K>();
auto backit = self.before_begin();
{
key += deferred_uc::index_adjustment(L, self);
auto e = deferred_uc::end(L, self);
for (auto it = deferred_uc::begin(L, self); key > 0; ++backit, ++it, --key) {
if (backit == e) {
return detail::error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
}
}
}
self.insert_after(backit, value.as<V>());
return {};
}
static detail::error_result insert_after_has(std::false_type, lua_State*, T&, stack_object, stack_object) {
return detail::error_result(
"cannot call 'insert' on '%s': no suitable or similar functionality detected on this container", detail::demangle<T>().data());
}
static detail::error_result insert_has(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) {
return insert_lookup(meta::any<is_associative, is_lookup>(), L, self, std::move(key), std::move(value));
}
static detail::error_result insert_has(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) {
return insert_after_has(meta::has_insert_after<T>(), L, self, where, value);
}
static detail::error_result insert_copyable(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) {
return insert_has(meta::has_insert<T>(), L, self, std::move(key), std::move(value));
}
static detail::error_result insert_copyable(std::false_type, lua_State*, T&, stack_object, stack_object) {
return detail::error_result("cannot call 'insert' on '%s': value_type is non-copyable", detail::demangle<T>().data());
}
static detail::error_result erase_integral(std::true_type, lua_State* L, T& self, K& key) {
auto it = deferred_uc::begin(L, self);
key += deferred_uc::index_adjustment(L, self);
std::advance(it, key);
self.erase(it);
return {};
}
static detail::error_result erase_integral(std::false_type, lua_State* L, T& self, const K& key) {
auto fx = [&](const value_type& r) -> bool { return key == r; };
auto e = deferred_uc::end(L, self);
auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx));
if (it == e) {
return {};
}
self.erase(it);
return {};
}
static detail::error_result erase_associative_lookup(std::true_type, lua_State*, T& self, const K& key) {
self.erase(key);
return {};
}
static detail::error_result erase_associative_lookup(std::false_type, lua_State* L, T& self, K& key) {
return erase_integral(std::is_integral<K>(), L, self, key);
}
static detail::error_result erase_after_has(std::true_type, lua_State* L, T& self, K& key) {
auto backit = self.before_begin();
{
key += deferred_uc::index_adjustment(L, self);
auto e = deferred_uc::end(L, self);
for (auto it = deferred_uc::begin(L, self); key > 0; ++backit, ++it, --key) {
if (backit == e) {
return detail::error_result("sol: out of bounds for erase on '%s'", detail::demangle<T>().c_str());
}
}
}
self.erase_after(backit);
return {};
}
static detail::error_result erase_after_has(std::false_type, lua_State*, T&, const K&) {
return detail::error_result("sol: cannot call erase on '%s'", detail::demangle<T>().c_str());
}
static detail::error_result erase_key_has(std::true_type, lua_State* L, T& self, K& key) {
return erase_associative_lookup(meta::any<is_associative, is_lookup>(), L, self, key);
}
static detail::error_result erase_key_has(std::false_type, lua_State* L, T& self, K& key) {
return erase_after_has(has_erase_after<T>(), L, self, key);
}
static detail::error_result erase_has(std::true_type, lua_State* L, T& self, K& key) {
return erase_associative_lookup(meta::any<is_associative, is_lookup>(), L, self, key);
}
static detail::error_result erase_has(std::false_type, lua_State* L, T& self, K& key) {
return erase_key_has(has_erase_key<T>(), L, self, key);
}
static auto size_has(std::false_type, lua_State* L, T& self) {
return std::distance(deferred_uc::begin(L, self), deferred_uc::end(L, self));
}
static auto size_has(std::true_type, lua_State*, T& self) {
return self.size();
}
static void clear_has(std::true_type, lua_State*, T& self) {
self.clear();
}
static void clear_has(std::false_type, lua_State* L, T&) {
luaL_error(L, "sol: cannot call clear on '%s'", detail::demangle<T>().c_str());
}
static bool empty_has(std::true_type, lua_State*, T& self) {
return self.empty();
}
static bool empty_has(std::false_type, lua_State* L, T& self) {
return deferred_uc::begin(L, self) == deferred_uc::end(L, self);
}
static detail::error_result get_associative_find(std::true_type, lua_State* L, T& self, K& key) {
auto it = self.find(key);
if (it == deferred_uc::end(L, self)) {
stack::push(L, lua_nil);
return {};
}
return get_associative(std::true_type(), L, it);
}
static detail::error_result get_associative_find(std::false_type, lua_State* L, T& self, K& key) {
return get_it(is_linear_integral(), L, self, key);
}
static detail::error_result get_start(lua_State* L, T& self, K& key) {
return get_associative_find(std::integral_constant < bool, is_associative::value&& has_find<T>::value > (), L, self, key);
}
static detail::error_result set_start(lua_State* L, T& self, stack_object key, stack_object value) {
return set_it(is_linear_integral(), L, self, std::move(key), std::move(value));
}
static std::size_t size_start(lua_State* L, T& self) {
return size_has(meta::has_size<T>(), L, self);
}
static void clear_start(lua_State* L, T& self) {
clear_has(has_clear<T>(), L, self);
}
static bool empty_start(lua_State* L, T& self) {
return empty_has(has_empty<T>(), L, self);
}
static detail::error_result erase_start(lua_State* L, T& self, K& key) {
return erase_has(has_erase<T>(), L, self, key);
}
template <bool ip>
static int next_associative(std::true_type, lua_State* L) {
iter& i = stack::unqualified_get<user<iter>>(L, 1);
auto& source = i.source;
auto& it = i.it;
if (it == deferred_uc::end(L, source)) {
return stack::push(L, lua_nil);
}
int p;
if constexpr (ip) {
++i.i;
p = stack::push_reference(L, i.i);
}
else {
p = stack::push_reference(L, it->first);
}
p += stack::stack_detail::push_reference<push_type>(L, detail::deref_move_only(it->second));
std::advance(it, 1);
return p;
}
template <bool>
static int next_associative(std::false_type, lua_State* L) {
iter& i = stack::unqualified_get<user<iter>>(L, 1);
auto& source = i.source;
auto& it = i.it;
next_K k = stack::unqualified_get<next_K>(L, 2);
if (it == deferred_uc::end(L, source)) {
return stack::push(L, lua_nil);
}
int p;
if constexpr (std::is_integral_v<next_K>) {
p = stack::push_reference(L, k + 1);
}
else {
p = stack::stack_detail::push_reference(L, k + 1);
}
p += stack::stack_detail::push_reference<push_type>(L, detail::deref_move_only(*it));
std::advance(it, 1);
return p;
}
template <bool ip>
static int next_iter(lua_State* L) {
typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
return next_associative<ip>(is_assoc(), L);
}
template <bool ip>
static int pairs_associative(std::true_type, lua_State* L) {
auto& src = get_src(L);
stack::push(L, next_iter<ip>);
stack::push<user<iter>>(L, src, deferred_uc::begin(L, src));
stack::push(L, lua_nil);
return 3;
}
template <bool ip>
static int pairs_associative(std::false_type, lua_State* L) {
auto& src = get_src(L);
stack::push(L, next_iter<ip>);
stack::push<user<iter>>(L, src, deferred_uc::begin(L, src));
stack::push(L, 0);
return 3;
}
public:
static int at(lua_State* L) {
auto& self = get_src(L);
detail::error_result er;
{
std::ptrdiff_t pos = stack::unqualified_get<std::ptrdiff_t>(L, 2);
er = at_start(L, self, pos);
}
return handle_errors(L, er);
}
static int get(lua_State* L) {
auto& self = get_src(L);
detail::error_result er;
{
decltype(auto) key = stack::unqualified_get<K>(L);
er = get_start(L, self, key);
}
return handle_errors(L, er);
}
static int index_get(lua_State* L) {
return get(L);
}
static int set(lua_State* L) {
stack_object value = stack_object(L, raw_index(3));
if constexpr (is_linear_integral::value) {
// for non-associative containers,
// erasure only happens if it is the
// last index in the container
auto key = stack::get<K>(L, 2);
auto self_size = deferred_uc::size(L);
if (key == static_cast<K>(self_size)) {
if (type_of(L, 3) == type::lua_nil) {
return erase(L);
}
}
}
else {
if (type_of(L, 3) == type::lua_nil) {
return erase(L);
}
}
auto& self = get_src(L);
detail::error_result er = set_start(L, self, stack_object(L, raw_index(2)), std::move(value));
return handle_errors(L, er);
}
static int index_set(lua_State* L) {
return set(L);
}
static int add(lua_State* L) {
auto& self = get_src(L);
detail::error_result er = add_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)));
return handle_errors(L, er);
}
static int insert(lua_State* L) {
auto& self = get_src(L);
detail::error_result er = insert_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)), stack_object(L, raw_index(3)));
return handle_errors(L, er);
}
static int find(lua_State* L) {
auto& self = get_src(L);
detail::error_result er = find_has(has_find<T>(), L, self);
return handle_errors(L, er);
}
static int index_of(lua_State* L) {
auto& self = get_src(L);
detail::error_result er = find_has<true>(has_find<T>(), L, self);
return handle_errors(L, er);
}
static iterator begin(lua_State*, T& self) {
if constexpr (meta::has_begin_end_v<T>) {
return self.begin();
}
else {
using std::begin;
return begin(self);
}
}
static iterator end(lua_State*, T& self) {
if constexpr (meta::has_begin_end_v<T>) {
return self.end();
}
else {
using std::end;
return end(self);
}
}
static int size(lua_State* L) {
auto& self = get_src(L);
std::size_t r = size_start(L, self);
return stack::push(L, r);
}
static int clear(lua_State* L) {
auto& self = get_src(L);
clear_start(L, self);
return 0;
}
static int erase(lua_State* L) {
auto& self = get_src(L);
detail::error_result er;
{
decltype(auto) key = stack::unqualified_get<K>(L, 2);
er = erase_start(L, self, key);
}
return handle_errors(L, er);
}
static int empty(lua_State* L) {
auto& self = get_src(L);
return stack::push(L, empty_start(L, self));
}
static std::ptrdiff_t index_adjustment(lua_State*, T&) {
return static_cast<std::ptrdiff_t>((SOL_CONTAINER_START_INDEX_I_) == 0 ? 0 : -(SOL_CONTAINER_START_INDEX_I_));
}
static int pairs(lua_State* L) {
typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
return pairs_associative<false>(is_assoc(), L);
}
static int ipairs(lua_State* L) {
typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
return pairs_associative<true>(is_assoc(), L);
}
static int next(lua_State* L) {
return stack::push(L, next_iter<false>);
}
};
template <typename X>
struct usertype_container_default<X, std::enable_if_t<std::is_array<std::remove_pointer_t<meta::unwrap_unqualified_t<X>>>::value>> {
private:
typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T;
typedef usertype_container<X> deferred_uc;
public:
typedef std::remove_extent_t<T> value_type;
typedef value_type* iterator;
private:
struct iter {
T& source;
iterator it;
iter(T& source, iterator it) : source(source), it(std::move(it)) {
}
};
static auto& get_src(lua_State* L) {
auto p = stack::unqualified_check_get<T*>(L, 1);
#if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
if (!p) {
luaL_error(L,
"sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)",
detail::demangle<T>().c_str());
}
if (p.value() == nullptr) {
luaL_error(
L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str());
}
#endif // Safe getting with error
return *p.value();
}
static int find(std::true_type, lua_State* L) {
T& self = get_src(L);
decltype(auto) value = stack::unqualified_get<value_type>(L, 2);
std::size_t N = std::extent<T>::value;
for (std::size_t idx = 0; idx < N; ++idx) {
using v_t = std::add_const_t<decltype(self[idx])>;
v_t v = self[idx];
if (v == value) {
idx -= deferred_uc::index_adjustment(L, self);
return stack::push(L, idx);
}
}
return stack::push(L, lua_nil);
}
static int find(std::false_type, lua_State* L) {
return luaL_error(L, "sol: cannot call 'find' on '%s': no supported comparison operator for the value type", detail::demangle<T>().c_str());
}
static int next_iter(lua_State* L) {
iter& i = stack::unqualified_get<user<iter>>(L, 1);
auto& source = i.source;
auto& it = i.it;
std::size_t k = stack::unqualified_get<std::size_t>(L, 2);
if (it == deferred_uc::end(L, source)) {
return 0;
}
int p;
p = stack::push(L, k + 1);
p += stack::push_reference(L, detail::deref_move_only(*it));
std::advance(it, 1);
return p;
}
public:
static int clear(lua_State* L) {
return luaL_error(L, "sol: cannot call 'clear' on type '%s': cannot remove all items from a fixed array", detail::demangle<T>().c_str());
}
static int erase(lua_State* L) {
return luaL_error(L, "sol: cannot call 'erase' on type '%s': cannot remove an item from fixed arrays", detail::demangle<T>().c_str());
}
static int add(lua_State* L) {
return luaL_error(L, "sol: cannot call 'add' on type '%s': cannot add to fixed arrays", detail::demangle<T>().c_str());
}
static int insert(lua_State* L) {
return luaL_error(L, "sol: cannot call 'insert' on type '%s': cannot insert new entries into fixed arrays", detail::demangle<T>().c_str());
}
static int at(lua_State* L) {
return get(L);
}
static int get(lua_State* L) {
T& self = get_src(L);
std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L, 2);
idx += deferred_uc::index_adjustment(L, self);
if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value) || idx < 0) {
return stack::push(L, lua_nil);
}
return stack::push_reference(L, detail::deref_move_only(self[idx]));
}
static int index_get(lua_State* L) {
return get(L);
}
static int set(lua_State* L) {
T& self = get_src(L);
std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L, 2);
idx += deferred_uc::index_adjustment(L, self);
if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value)) {
return luaL_error(L, "sol: index out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
}
if (idx < 0) {
return luaL_error(L, "sol: index out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str());
}
self[idx] = stack::unqualified_get<value_type>(L, 3);
return 0;
}
static int index_set(lua_State* L) {
return set(L);
}
static int index_of(lua_State* L) {
return find(L);
}
static int find(lua_State* L) {
return find(meta::supports_op_equal<value_type, value_type>(), L);
}
static int size(lua_State* L) {
return stack::push(L, std::extent<T>::value);
}
static int empty(lua_State* L) {
return stack::push(L, std::extent<T>::value > 0);
}
static int pairs(lua_State* L) {
auto& src = get_src(L);
stack::push(L, next_iter);
stack::push<user<iter>>(L, src, deferred_uc::begin(L, src));
stack::push(L, 0);
return 3;
}
static int ipairs(lua_State* L) {
return pairs(L);
}
static int next(lua_State* L) {
return stack::push(L, next_iter);
}
static std::ptrdiff_t index_adjustment(lua_State*, T&) {
return (SOL_CONTAINER_START_INDEX_I_) == 0 ? 0 : -(SOL_CONTAINER_START_INDEX_I_);
}
static iterator begin(lua_State*, T& self) {
return std::addressof(self[0]);
}
static iterator end(lua_State*, T& self) {
return std::addressof(self[0]) + std::extent<T>::value;
}
};
template <typename X>
struct usertype_container_default<usertype_container<X>> : usertype_container_default<X> {};
} // namespace container_detail
template <typename T>
struct usertype_container : container_detail::usertype_container_default<T> {};
} // namespace sol
// end of sol/usertype_container.hpp
#include <unordered_map>
namespace sol {
namespace container_detail {
template <typename X>
struct u_c_launch {
using T = std::remove_pointer_t<meta::unqualified_t<X>>;
using uc = usertype_container<T>;
using default_uc = usertype_container_default<T>;
static inline int real_index_get_traits(std::true_type, lua_State* L) {
return uc::index_get(L);
}
static inline int real_index_get_traits(std::false_type, lua_State* L) {
return default_uc::index_get(L);
}
static inline int real_index_call(lua_State* L) {
static const std::unordered_map<string_view, lua_CFunction> calls {
{ "at", &real_at_call },
{ "get", &real_get_call },
{ "set", &real_set_call },
{ "size", &real_length_call },
{ "add", &real_add_call },
{ "empty", &real_empty_call },
{ "insert", &real_insert_call },
{ "clear", &real_clear_call },
{ "find", &real_find_call },
{ "index_of", &real_index_of_call },
{ "erase", &real_erase_call },
{ "pairs", &pairs_call },
{ "next", &next_call },
};
auto maybenameview = stack::unqualified_check_get<string_view>(L, 2);
if (maybenameview) {
const string_view& name = *maybenameview;
auto it = calls.find(name);
if (it != calls.cend()) {
return stack::push(L, it->second);
}
}
return real_index_get_traits(container_detail::has_traits_index_get<uc>(), L);
}
static inline int real_at_traits(std::true_type, lua_State* L) {
return uc::at(L);
}
static inline int real_at_traits(std::false_type, lua_State* L) {
return default_uc::at(L);
}
static inline int real_at_call(lua_State* L) {
return real_at_traits(container_detail::has_traits_at<uc>(), L);
}
static inline int real_get_traits(std::true_type, lua_State* L) {
return uc::get(L);
}
static inline int real_get_traits(std::false_type, lua_State* L) {
return default_uc::get(L);
}
static inline int real_get_call(lua_State* L) {
return real_get_traits(container_detail::has_traits_get<uc>(), L);
}
static inline int real_set_traits(std::true_type, lua_State* L) {
return uc::set(L);
}
static inline int real_set_traits(std::false_type, lua_State* L) {
return default_uc::set(L);
}
static inline int real_set_call(lua_State* L) {
return real_set_traits(container_detail::has_traits_set<uc>(), L);
}
static inline int real_index_set_traits(std::true_type, lua_State* L) {
return uc::index_set(L);
}
static inline int real_index_set_traits(std::false_type, lua_State* L) {
return default_uc::index_set(L);
}
static inline int real_new_index_call(lua_State* L) {
return real_index_set_traits(container_detail::has_traits_index_set<uc>(), L);
}
static inline int real_pairs_traits(std::true_type, lua_State* L) {
return uc::pairs(L);
}
static inline int real_pairs_traits(std::false_type, lua_State* L) {
return default_uc::pairs(L);
}
static inline int real_pairs_call(lua_State* L) {
return real_pairs_traits(container_detail::has_traits_pairs<uc>(), L);
}
static inline int real_ipairs_traits(std::true_type, lua_State* L) {
return uc::ipairs(L);
}
static inline int real_ipairs_traits(std::false_type, lua_State* L) {
return default_uc::ipairs(L);
}
static inline int real_ipairs_call(lua_State* L) {
return real_ipairs_traits(container_detail::has_traits_ipairs<uc>(), L);
}
static inline int real_next_traits(std::true_type, lua_State* L) {
return uc::next(L);
}
static inline int real_next_traits(std::false_type, lua_State* L) {
return default_uc::next(L);
}
static inline int real_next_call(lua_State* L) {
return real_next_traits(container_detail::has_traits_next<uc>(), L);
}
static inline int real_size_traits(std::true_type, lua_State* L) {
return uc::size(L);
}
static inline int real_size_traits(std::false_type, lua_State* L) {
return default_uc::size(L);
}
static inline int real_length_call(lua_State* L) {
return real_size_traits(container_detail::has_traits_size<uc>(), L);
}
static inline int real_add_traits(std::true_type, lua_State* L) {
return uc::add(L);
}
static inline int real_add_traits(std::false_type, lua_State* L) {
return default_uc::add(L);
}
static inline int real_add_call(lua_State* L) {
return real_add_traits(container_detail::has_traits_add<uc>(), L);
}
static inline int real_insert_traits(std::true_type, lua_State* L) {
return uc::insert(L);
}
static inline int real_insert_traits(std::false_type, lua_State* L) {
return default_uc::insert(L);
}
static inline int real_insert_call(lua_State* L) {
return real_insert_traits(container_detail::has_traits_insert<uc>(), L);
}
static inline int real_clear_traits(std::true_type, lua_State* L) {
return uc::clear(L);
}
static inline int real_clear_traits(std::false_type, lua_State* L) {
return default_uc::clear(L);
}
static inline int real_clear_call(lua_State* L) {
return real_clear_traits(container_detail::has_traits_clear<uc>(), L);
}
static inline int real_empty_traits(std::true_type, lua_State* L) {
return uc::empty(L);
}
static inline int real_empty_traits(std::false_type, lua_State* L) {
return default_uc::empty(L);
}
static inline int real_empty_call(lua_State* L) {
return real_empty_traits(container_detail::has_traits_empty<uc>(), L);
}
static inline int real_erase_traits(std::true_type, lua_State* L) {
return uc::erase(L);
}
static inline int real_erase_traits(std::false_type, lua_State* L) {
return default_uc::erase(L);
}
static inline int real_erase_call(lua_State* L) {
return real_erase_traits(container_detail::has_traits_erase<uc>(), L);
}
static inline int real_find_traits(std::true_type, lua_State* L) {
return uc::find(L);
}
static inline int real_find_traits(std::false_type, lua_State* L) {
return default_uc::find(L);
}
static inline int real_find_call(lua_State* L) {
return real_find_traits(container_detail::has_traits_find<uc>(), L);
}
static inline int real_index_of_call(lua_State* L) {
if constexpr (container_detail::has_traits_index_of<uc>()) {
return uc::index_of(L);
}
else {
return default_uc::index_of(L);
}
}
static inline int add_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_add_call), (&real_add_call)>(L);
}
static inline int erase_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_erase_call), (&real_erase_call)>(L);
}
static inline int insert_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_insert_call), (&real_insert_call)>(L);
}
static inline int clear_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_clear_call), (&real_clear_call)>(L);
}
static inline int empty_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_empty_call), (&real_empty_call)>(L);
}
static inline int find_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_find_call), (&real_find_call)>(L);
}
static inline int index_of_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_index_of_call), (&real_index_of_call)>(L);
}
static inline int length_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_length_call), (&real_length_call)>(L);
}
static inline int pairs_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_pairs_call), (&real_pairs_call)>(L);
}
static inline int ipairs_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_ipairs_call), (&real_ipairs_call)>(L);
}
static inline int next_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_next_call), (&real_next_call)>(L);
}
static inline int at_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_at_call), (&real_at_call)>(L);
}
static inline int get_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_get_call), (&real_get_call)>(L);
}
static inline int set_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_set_call), (&real_set_call)>(L);
}
static inline int index_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L);
}
static inline int new_index_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L);
}
};
} // namespace container_detail
namespace stack {
namespace stack_detail {
template <typename T, bool is_shim = false>
struct metatable_setup {
lua_State* L;
metatable_setup(lua_State* L) : L(L) {
}
void operator()() {
using meta_usertype_container
= container_detail::u_c_launch<meta::conditional_t<is_shim, as_container_t<std::remove_pointer_t<T>>, std::remove_pointer_t<T>>>;
static const char* metakey
= is_shim ? &usertype_traits<as_container_t<std::remove_pointer_t<T>>>::metatable()[0] : &usertype_traits<T>::metatable()[0];
static const std::array<luaL_Reg, 20> reg = { {
// clang-format off
{ "__pairs", &meta_usertype_container::pairs_call },
{ "__ipairs", &meta_usertype_container::ipairs_call },
{ "__len", &meta_usertype_container::length_call },
{ "__index", &meta_usertype_container::index_call },
{ "__newindex", &meta_usertype_container::new_index_call },
{ "pairs", &meta_usertype_container::pairs_call },
{ "next", &meta_usertype_container::next_call },
{ "at", &meta_usertype_container::at_call },
{ "get", &meta_usertype_container::get_call },
{ "set", &meta_usertype_container::set_call },
{ "size", &meta_usertype_container::length_call },
{ "empty", &meta_usertype_container::empty_call },
{ "clear", &meta_usertype_container::clear_call },
{ "insert", &meta_usertype_container::insert_call },
{ "add", &meta_usertype_container::add_call },
{ "find", &meta_usertype_container::find_call },
{ "index_of", &meta_usertype_container::index_of_call },
{ "erase", &meta_usertype_container::erase_call },
std::is_pointer<T>::value ? luaL_Reg{ nullptr, nullptr } : luaL_Reg{ "__gc", &detail::usertype_alloc_destruct<T> },
{ nullptr, nullptr }
// clang-format on
} };
if (luaL_newmetatable(L, metakey) == 1) {
luaL_setfuncs(L, reg.data(), 0);
}
lua_setmetatable(L, -2);
}
};
} // namespace stack_detail
template <typename T>
struct unqualified_pusher<as_container_t<T>> {
using C = meta::unqualified_t<T>;
static int push_lvalue(std::true_type, lua_State* L, const C& cont) {
stack_detail::metatable_setup<C*, true> fx(L);
return stack::push<detail::as_pointer_tag<const C>>(L, detail::with_function_tag(), fx, detail::ptr(cont));
}
static int push_lvalue(std::false_type, lua_State* L, const C& cont) {
stack_detail::metatable_setup<C, true> fx(L);
return stack::push<detail::as_value_tag<C>>(L, detail::with_function_tag(), fx, cont);
}
static int push_rvalue(std::true_type, lua_State* L, C&& cont) {
stack_detail::metatable_setup<C, true> fx(L);
return stack::push<detail::as_value_tag<C>>(L, detail::with_function_tag(), fx, std::move(cont));
}
static int push_rvalue(std::false_type, lua_State* L, const C& cont) {
return push_lvalue(std::is_lvalue_reference<T>(), L, cont);
}
static int push(lua_State* L, const as_container_t<T>& as_cont) {
return push_lvalue(std::is_lvalue_reference<T>(), L, as_cont.value());
}
static int push(lua_State* L, as_container_t<T>&& as_cont) {
return push_rvalue(meta::all<std::is_rvalue_reference<T>, meta::neg<std::is_lvalue_reference<T>>>(), L, std::forward<T>(as_cont.value()));
}
};
template <typename T>
struct unqualified_pusher<as_container_t<T*>> {
using C = std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>>;
static int push(lua_State* L, T* cont) {
stack_detail::metatable_setup<C> fx(L);
return stack::push<detail::as_pointer_tag<T>>(L, detail::with_function_tag(), fx, cont);
}
};
template <typename T>
struct unqualified_pusher<T, std::enable_if_t<is_container_v<T>>> {
using C = T;
template <typename... Args>
static int push(lua_State* L, Args&&... args) {
stack_detail::metatable_setup<C> fx(L);
return stack::push<detail::as_value_tag<T>>(L, detail::with_function_tag(), fx, std::forward<Args>(args)...);
}
};
template <typename T>
struct unqualified_pusher<T*, std::enable_if_t<is_container_v<T>>> {
using C = std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>>;
static int push(lua_State* L, T* cont) {
stack_detail::metatable_setup<C> fx(L);
return stack::push<detail::as_pointer_tag<T>>(L, detail::with_function_tag(), fx, cont);
}
};
} // namespace stack
} // namespace sol
// end of sol/usertype_container_launch.hpp
#include <sstream>
#include <type_traits>
namespace sol {
namespace u_detail {
constexpr const lua_Integer toplevel_magic = static_cast<lua_Integer>(0xCCC2CCC1);
constexpr const int environment_index = 1;
constexpr const int usertype_storage_index = 2;
constexpr const int usertype_storage_base_index = 3;
constexpr const int exact_function_index = 4;
constexpr const int magic_index = 5;
constexpr const int simple_usertype_storage_index = 2;
constexpr const int index_function_index = 3;
constexpr const int new_index_function_index = 4;
constexpr const int base_walking_failed_index = -32467;
constexpr const int lookup_failed_index = -42469;
enum class submetatable_type {
// must be sequential
value,
reference,
unique,
const_reference,
const_value,
// must be LAST!
named
};
inline auto make_string_view(string_view s) {
return s;
}
inline auto make_string_view(call_construction) {
return string_view(to_string(meta_function::call_function));
}
inline auto make_string_view(meta_function mf) {
return string_view(to_string(mf));
}
inline auto make_string_view(base_classes_tag) {
return string_view(detail::base_class_cast_key());
}
template <typename Arg>
inline std::string make_string(Arg&& arg) {
string_view s = make_string_view(arg);
return std::string(s.data(), s.size());
}
inline int is_indexer(string_view s) {
if (s == to_string(meta_function::index)) {
return 1;
}
else if (s == to_string(meta_function::new_index)) {
return 2;
}
return 0;
}
inline int is_indexer(meta_function mf) {
if (mf == meta_function::index) {
return 1;
}
else if (mf == meta_function::new_index) {
return 2;
}
return 0;
}
inline int is_indexer(call_construction) {
return 0;
}
} // namespace u_detail
namespace detail {
template <typename T, typename IFx, typename Fx>
inline void insert_default_registrations(IFx&& ifx, Fx&& fx) {
(void)ifx;
(void)fx;
if constexpr (is_automagical<T>::value) {
if (fx(meta_function::less_than)) {
if constexpr (meta::supports_op_less<T>::value) {
lua_CFunction f = &comparsion_operator_wrap<T, std::less<>>;
ifx(meta_function::less_than, f);
}
}
if (fx(meta_function::less_than_or_equal_to)) {
if constexpr (meta::supports_op_less_equal<T>::value) {
lua_CFunction f = &comparsion_operator_wrap<T, std::less_equal<>>;
ifx(meta_function::less_than_or_equal_to, f);
}
}
if (fx(meta_function::equal_to)) {
if constexpr (meta::supports_op_equal<T>::value) {
lua_CFunction f = &comparsion_operator_wrap<T, std::equal_to<>>;
ifx(meta_function::equal_to, f);
}
else {
lua_CFunction f = &comparsion_operator_wrap<T, no_comp>;
ifx(meta_function::equal_to, f);
}
}
if (fx(meta_function::pairs)) {
ifx(meta_function::pairs, &container_detail::u_c_launch<as_container_t<T>>::pairs_call);
}
if (fx(meta_function::length)) {
if constexpr (meta::has_size<const T>::value || meta::has_size<T>::value) {
auto f = &default_size<T>;
ifx(meta_function::length, f);
}
}
if (fx(meta_function::to_string)) {
if constexpr (is_to_stringable<T>::value) {
auto f = &detail::static_trampoline<&default_to_string<T>>;
ifx(meta_function::to_string, f);
}
}
if (fx(meta_function::call_function)) {
if constexpr (meta::has_deducible_signature<T>::value) {
auto f = &c_call<decltype(&T::operator()), &T::operator()>;
ifx(meta_function::call_function, f);
}
}
}
}
} // namespace detail
namespace stack { namespace stack_detail {
template <typename X>
void set_undefined_methods_on(stack_reference t) {
using T = std::remove_pointer_t<X>;
lua_State* L = t.lua_state();
t.push();
detail::lua_reg_table l{};
int index = 0;
detail::indexed_insert insert_fx(l, index);
detail::insert_default_registrations<T>(insert_fx, detail::property_always_true);
if constexpr (!std::is_pointer_v<X>) {
l[index] = luaL_Reg{ to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() };
}
luaL_setfuncs(L, l, 0);
// __type table
lua_createtable(L, 0, 2);
const std::string& name = detail::demangle<T>();
lua_pushlstring(L, name.c_str(), name.size());
lua_setfield(L, -2, "name");
lua_CFunction is_func = &detail::is_check<T>;
lua_pushcclosure(L, is_func, 0);
lua_setfield(L, -2, "is");
lua_setfield(L, t.stack_index(), to_string(meta_function::type).c_str());
t.pop();
}
}} // namespace stack::stack_detail
} // namespace sol
// end of sol/usertype_core.hpp
// beginning of sol/usertype_storage.hpp
#include <bitset>
#include <unordered_map>
namespace sol { namespace u_detail {
struct usertype_storage_base;
template <typename T>
struct usertype_storage;
optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, int index);
usertype_storage_base& get_usertype_storage_base(lua_State* L, const char* gcmetakey);
template <typename T>
optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L);
template <typename T>
usertype_storage<T>& get_usertype_storage(lua_State* L);
using index_call_function = int(lua_State*, void*);
using change_indexing_mem_func
= void (usertype_storage_base::*)(lua_State*, submetatable_type, void*, stack_reference&, lua_CFunction, lua_CFunction, lua_CFunction, lua_CFunction);
struct index_call_storage {
index_call_function* index;
index_call_function* new_index;
void* binding_data;
};
struct new_index_call_storage : index_call_storage {
void* new_binding_data;
};
struct binding_base {
virtual void* data() = 0;
virtual ~binding_base() {
}
};
template <typename K, typename Fq, typename T = void>
struct binding : binding_base {
using uF = meta::unqualified_t<Fq>;
using F = meta::conditional_t<meta::is_c_str_of_v<uF, char>
#ifdef __cpp_char8_t
|| meta::is_c_str_of_v<uF, char8_t>
#endif
|| meta::is_c_str_of_v<uF, char16_t> || meta::is_c_str_of_v<uF, char32_t> || meta::is_c_str_of_v<uF, wchar_t>,
std::add_pointer_t<std::add_const_t<std::remove_all_extents_t<Fq>>>, std::decay_t<Fq>>;
F data_;
template <typename... Args>
binding(Args&&... args) : data_(std::forward<Args>(args)...) {
}
virtual void* data() override {
return static_cast<void*>(std::addressof(data_));
}
template <bool is_index = true, bool is_variable = false>
static inline int call_with_(lua_State* L, void* target) {
constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0;
auto& f = *static_cast<F*>(target);
return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f);
}
template <bool is_index = true, bool is_variable = false>
static inline int call_(lua_State* L) {
void* f = stack::get<void*>(L, upvalue_index(usertype_storage_index));
return call_with_<is_index, is_variable>(L, f);
}
template <bool is_index = true, bool is_variable = false>
static inline int call(lua_State* L) {
int r = detail::typed_static_trampoline<decltype(&call_<is_index, is_variable>), (&call_<is_index, is_variable>)>(L);
if constexpr (meta::is_specialization_of_v<uF, yielding_t>) {
return lua_yield(L, r);
}
else {
return r;
}
}
template <bool is_index = true, bool is_variable = false>
static inline int index_call_with_(lua_State* L, void* target) {
if constexpr (!is_variable) {
if constexpr (is_lua_c_function_v<std::decay_t<F>>) {
auto& f = *static_cast<std::decay_t<F>*>(target);
return stack::push(L, f);
}
else {
// set up upvalues
// for a chained call
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push(L, target);
auto cfunc = &call<is_index, is_variable>;
return stack::push(L, c_closure(cfunc, upvalues));
}
}
else {
constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0;
auto& f = *static_cast<F*>(target);
return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f);
}
}
template <bool is_index = true, bool is_variable = false>
static inline int index_call_(lua_State* L) {
void* f = stack::get<void*>(L, upvalue_index(usertype_storage_index));
return index_call_with_<is_index, is_variable>(L, f);
}
template <bool is_index = true, bool is_variable = false>
static inline int index_call(lua_State* L) {
int r = detail::typed_static_trampoline<decltype(&index_call_<is_index, is_variable>), (&index_call_<is_index, is_variable>)>(L);
if constexpr (meta::is_specialization_of_v<uF, yielding_t>) {
return lua_yield(L, r);
}
else {
return r;
}
}
};
inline int index_fail(lua_State* L) {
if (lua_getmetatable(L, 1) == 1) {
int metatarget = lua_gettop(L);
stack::get_field<false, true>(L, stack_reference(L, raw_index(2)), metatarget);
return 1;
}
// With runtime extensibility, we can't
// hard-error things. They have to
// return nil, like regular table types
return stack::push(L, lua_nil);
}
inline int index_target_fail(lua_State* L, void*) {
return index_fail(L);
}
inline int new_index_fail(lua_State* L) {
return luaL_error(L, "sol: cannot set (new_index) into this object: no defined new_index operation on usertype");
}
inline int new_index_target_fail(lua_State* L, void*) {
return new_index_fail(L);
}
struct string_for_each_metatable_func {
bool is_destruction = false;
bool is_index = false;
bool is_new_index = false;
bool is_static_index = false;
bool is_static_new_index = false;
bool poison_indexing = false;
bool is_unqualified_lua_CFunction = false;
bool is_unqualified_lua_reference = false;
std::string* p_key = nullptr;
reference* p_binding_ref = nullptr;
lua_CFunction call_func = nullptr;
index_call_storage* p_ics = nullptr;
usertype_storage_base* p_usb = nullptr;
void* p_derived_usb = nullptr;
lua_CFunction idx_call = nullptr, new_idx_call = nullptr, meta_idx_call = nullptr, meta_new_idx_call = nullptr;
change_indexing_mem_func change_indexing;
void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) {
std::string& key = *p_key;
usertype_storage_base& usb = *p_usb;
index_call_storage& ics = *p_ics;
if (smt == submetatable_type::named) {
// do not override __call or
// other specific meta functions on named metatable:
// we need that for call construction
// and other amenities
return;
}
int fast_index_table_push = fast_index_table.push();
stack_reference t(L, -fast_index_table_push);
if (poison_indexing) {
(usb.*change_indexing)(L, smt, p_derived_usb, t, idx_call, new_idx_call, meta_idx_call, meta_new_idx_call);
}
if (is_destruction
&& (smt == submetatable_type::reference || smt == submetatable_type::const_reference || smt == submetatable_type::named
|| smt == submetatable_type::unique)) {
// gc does not apply to us here
// for reference types (raw T*, std::ref)
// for the named metatable itself,
// or for unique_usertypes, which do their own custom destruction
t.pop();
return;
}
if (is_index || is_new_index || is_static_index || is_static_new_index) {
// do not serialize the new_index and index functions here directly
// we control those...
t.pop();
return;
}
if (is_unqualified_lua_CFunction) {
stack::set_field<false, true>(L, key, call_func, t.stack_index());
}
else if (is_unqualified_lua_reference) {
reference& binding_ref = *p_binding_ref;
stack::set_field<false, true>(L, key, binding_ref, t.stack_index());
}
else {
stack::set_field<false, true>(L, key, make_closure(call_func, nullptr, ics.binding_data), t.stack_index());
}
t.pop();
}
};
struct lua_reference_func {
reference key;
reference value;
void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) {
if (smt == submetatable_type::named) {
return;
}
int fast_index_table_push = fast_index_table.push();
stack_reference t(L, -fast_index_table_push);
stack::set_field<false, true>(L, key, value, t.stack_index());
t.pop();
}
};
struct update_bases_func {
detail::inheritance_check_function base_class_check_func;
detail::inheritance_cast_function base_class_cast_func;
lua_CFunction idx_call, new_idx_call, meta_idx_call, meta_new_idx_call;
usertype_storage_base* p_usb;
void* p_derived_usb;
change_indexing_mem_func change_indexing;
void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) {
int fast_index_table_push = fast_index_table.push();
stack_reference t(L, -fast_index_table_push);
stack::set_field(L, detail::base_class_check_key(), reinterpret_cast<void*>(base_class_check_func), t.stack_index());
stack::set_field(L, detail::base_class_cast_key(), reinterpret_cast<void*>(base_class_cast_func), t.stack_index());
// change indexing, forcefully
(p_usb->*change_indexing)(L, smt, p_derived_usb, t, idx_call, new_idx_call, meta_idx_call, meta_new_idx_call);
t.pop();
}
};
struct binding_data_equals {
void* binding_data;
binding_data_equals(void* b) : binding_data(b) {
}
bool operator()(const std::unique_ptr<binding_base>& ptr) const {
return binding_data == ptr->data();
}
};
struct usertype_storage_base {
public:
std::vector<std::unique_ptr<binding_base>> storage;
std::vector<std::unique_ptr<char[]>> string_keys_storage;
std::unordered_map<string_view, index_call_storage> string_keys;
std::unordered_map<reference, reference, reference_hash, reference_equals> auxiliary_keys;
reference value_index_table;
reference reference_index_table;
reference unique_index_table;
reference const_reference_index_table;
reference const_value_index_table;
reference named_index_table;
reference type_table;
reference gc_names_table;
reference named_metatable;
new_index_call_storage base_index;
new_index_call_storage static_base_index;
bool is_using_index;
bool is_using_new_index;
std::bitset<64> properties;
usertype_storage_base(lua_State* L)
: storage()
, string_keys()
, auxiliary_keys()
, value_index_table()
, reference_index_table()
, unique_index_table()
, const_reference_index_table()
, type_table(make_reference(L, create))
, gc_names_table(make_reference(L, create))
, named_metatable(make_reference(L, create))
, base_index()
, static_base_index()
, is_using_index(false)
, is_using_new_index(false)
, properties() {
base_index.binding_data = nullptr;
base_index.index = index_target_fail;
base_index.new_index = new_index_target_fail;
base_index.new_binding_data = nullptr;
static_base_index.binding_data = nullptr;
static_base_index.index = index_target_fail;
static_base_index.new_binding_data = this;
static_base_index.new_index = new_index_target_set;
}
template <typename Fx>
void for_each_table(lua_State* L, Fx&& fx) {
for (int i = 0; i < 6; ++i) {
submetatable_type smt = static_cast<submetatable_type>(i);
reference* p_fast_index_table = nullptr;
switch (smt) {
case submetatable_type::const_value:
p_fast_index_table = &this->const_value_index_table;
break;
case submetatable_type::reference:
p_fast_index_table = &this->reference_index_table;
break;
case submetatable_type::unique:
p_fast_index_table = &this->unique_index_table;
break;
case submetatable_type::const_reference:
p_fast_index_table = &this->const_reference_index_table;
break;
case submetatable_type::named:
p_fast_index_table = &this->named_index_table;
break;
case submetatable_type::value:
default:
p_fast_index_table = &this->value_index_table;
break;
}
fx(L, smt, *p_fast_index_table);
}
}
void add_entry(string_view sv, index_call_storage ics) {
string_keys_storage.emplace_back(new char[sv.size()]);
std::unique_ptr<char[]>& sv_storage = string_keys_storage.back();
std::memcpy(sv_storage.get(), sv.data(), sv.size());
string_view stored_sv(sv_storage.get(), sv.size());
string_keys.insert_or_assign(std::move(stored_sv), std::move(ics));
}
template <typename T, typename... Bases>
void update_bases(lua_State* L, bases<Bases...>) {
static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function),
"The size of this data pointer is too small to fit the inheritance checking function: Please file "
"a bug report.");
static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function),
"The size of this data pointer is too small to fit the inheritance checking function: Please file "
"a bug report.");
static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases");
if constexpr (sizeof...(Bases) < 1) {
return;
}
(void)detail::swallow { 0, ((weak_derive<Bases>::value = true), 0)... };
void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this));
update_bases_func for_each_fx;
for_each_fx.base_class_check_func = &detail::inheritance<T>::template type_check_with<Bases...>;
for_each_fx.base_class_cast_func = &detail::inheritance<T>::template type_cast_with<Bases...>;
for_each_fx.idx_call = &usertype_storage<T>::template index_call_with_bases<false, Bases...>;
for_each_fx.new_idx_call = &usertype_storage<T>::template index_call_with_bases<true, Bases...>;
for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<false, Bases...>;
for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<true, Bases...>;
for_each_fx.p_usb = this;
for_each_fx.p_derived_usb = derived_this;
for_each_fx.change_indexing = &usertype_storage_base::change_indexing;
for_each_fx.p_derived_usb = derived_this;
this->for_each_table(L, for_each_fx);
}
void clear() {
if (value_index_table.valid()) {
stack::clear(value_index_table);
}
if (reference_index_table.valid()) {
stack::clear(reference_index_table);
}
if (unique_index_table.valid()) {
stack::clear(unique_index_table);
}
if (const_reference_index_table.valid()) {
stack::clear(const_reference_index_table);
}
if (const_value_index_table.valid()) {
stack::clear(const_value_index_table);
}
if (named_index_table.valid()) {
stack::clear(named_index_table);
}
if (type_table.valid()) {
stack::clear(type_table);
}
if (gc_names_table.valid()) {
stack::clear(gc_names_table);
}
if (named_metatable.valid()) {
lua_State* L = named_metatable.lua_state();
auto pp = stack::push_pop(named_metatable);
int named_metatable_index = pp.index_of(named_metatable);
if (lua_getmetatable(L, named_metatable_index) == 1) {
stack::clear(L, absolute_index(L, -1));
}
stack::clear(named_metatable);
}
value_index_table = lua_nil;
reference_index_table = lua_nil;
unique_index_table = lua_nil;
const_reference_index_table = lua_nil;
const_value_index_table = lua_nil;
named_index_table = lua_nil;
type_table = lua_nil;
gc_names_table = lua_nil;
named_metatable = lua_nil;
storage.clear();
string_keys.clear();
auxiliary_keys.clear();
}
template <bool is_new_index, typename Base>
static void base_walk_index(lua_State* L, usertype_storage_base& self, bool& keep_going, int& base_result) {
using bases = typename base<Base>::type;
if (!keep_going) {
return;
}
(void)L;
(void)self;
#if SOL_IS_ON(SOL_USE_UNSAFE_BASE_LOOKUP_I_)
usertype_storage_base& base_storage = get_usertype_storage<Base>(L);
base_result = self_index_call<is_new_index, true>(bases(), L, base_storage);
#else
optional<usertype_storage<Base>&> maybe_base_storage = maybe_get_usertype_storage<Base>(L);
if (static_cast<bool>(maybe_base_storage)) {
base_result = self_index_call<is_new_index, true>(bases(), L, *maybe_base_storage);
keep_going = base_result == base_walking_failed_index;
}
#endif // Fast versus slow, safe base lookup
}
template <bool is_new_index = false, bool base_walking = false, bool from_named_metatable = false, typename... Bases>
static inline int self_index_call(types<Bases...>, lua_State* L, usertype_storage_base& self) {
type k_type = stack::get<type>(L, 2);
if (k_type == type::string) {
index_call_storage* target = nullptr;
{
string_view k = stack::get<string_view>(L, 2);
auto it = self.string_keys.find(k);
if (it != self.string_keys.cend()) {
target = &it->second;
}
}
if (target != nullptr) {
// let the target decide what to do
if constexpr (is_new_index) {
return (target->new_index)(L, target->binding_data);
}
else {
return (target->index)(L, target->binding_data);
}
}
}
else if (k_type != type::lua_nil && k_type != type::none) {
reference* target = nullptr;
{
stack_reference k = stack::get<stack_reference>(L, 2);
auto it = self.auxiliary_keys.find(k);
if (it != self.auxiliary_keys.cend()) {
target = &it->second;
}
}
if (target != nullptr) {
if constexpr (is_new_index) {
// set value and return
*target = reference(L, 3);
return 0;
}
else {
// push target to return
// what we found
return stack::push(L, *target);
}
}
}
// retrieve bases and walk through them.
bool keep_going = true;
int base_result;
(void)keep_going;
(void)base_result;
(void)detail::swallow { 1, (base_walk_index<is_new_index, Bases>(L, self, keep_going, base_result), 1)... };
if constexpr (sizeof...(Bases) > 0) {
if (!keep_going) {
return base_result;
}
}
if constexpr (base_walking) {
// if we're JUST base-walking then don't index-fail, just
// return the false bits
return base_walking_failed_index;
}
else if constexpr (from_named_metatable) {
if constexpr (is_new_index) {
return self.static_base_index.new_index(L, self.static_base_index.new_binding_data);
}
else {
return self.static_base_index.index(L, self.static_base_index.binding_data);
}
}
else {
if constexpr (is_new_index) {
return self.base_index.new_index(L, self.base_index.new_binding_data);
}
else {
return self.base_index.index(L, self.base_index.binding_data);
}
}
}
void change_indexing(lua_State* L, submetatable_type submetatable, void* derived_this, stack_reference& t, lua_CFunction index,
lua_CFunction new_index, lua_CFunction meta_index, lua_CFunction meta_new_index) {
usertype_storage_base& this_base = *this;
void* base_this = static_cast<void*>(&this_base);
this->is_using_index |= true;
this->is_using_new_index |= true;
if (submetatable == submetatable_type::named) {
stack::set_field(L, metatable_key, named_index_table, t.stack_index());
stack_reference stack_metametatable(L, -named_metatable.push());
stack::set_field<false, true>(L,
meta_function::index,
make_closure(meta_index, nullptr, derived_this, base_this, nullptr, toplevel_magic),
stack_metametatable.stack_index());
stack::set_field<false, true>(L,
meta_function::new_index,
make_closure(meta_new_index, nullptr, derived_this, base_this, nullptr, toplevel_magic),
stack_metametatable.stack_index());
stack_metametatable.pop();
}
else {
stack::set_field<false, true>(
L, meta_function::index, make_closure(index, nullptr, derived_this, base_this, nullptr, toplevel_magic), t.stack_index());
stack::set_field<false, true>(
L, meta_function::new_index, make_closure(new_index, nullptr, derived_this, base_this, nullptr, toplevel_magic), t.stack_index());
}
}
template <typename T = void, typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value);
static int new_index_target_set(lua_State* L, void* target) {
usertype_storage_base& self = *static_cast<usertype_storage_base*>(target);
self.set(L, reference(L, raw_index(2)), reference(L, raw_index(3)));
return 0;
}
};
template <typename T>
struct usertype_storage : usertype_storage_base {
using usertype_storage_base::usertype_storage_base;
template <bool is_new_index, bool from_named_metatable>
static inline int index_call_(lua_State* L) {
using bases = typename base<T>::type;
usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index));
return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self);
}
template <bool is_new_index, bool from_named_metatable, typename... Bases>
static inline int index_call_with_bases_(lua_State* L) {
using bases = types<Bases...>;
usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index));
return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self);
}
template <bool is_new_index>
static inline int index_call(lua_State* L) {
return detail::static_trampoline<&index_call_<is_new_index, false>>(L);
}
template <bool is_new_index, typename... Bases>
static inline int index_call_with_bases(lua_State* L) {
return detail::static_trampoline<&index_call_with_bases_<is_new_index, false, Bases...>>(L);
}
template <bool is_new_index>
static inline int meta_index_call(lua_State* L) {
return detail::static_trampoline<&index_call_<is_new_index, true>>(L);
}
template <bool is_new_index, typename... Bases>
static inline int meta_index_call_with_bases(lua_State* L) {
return detail::static_trampoline<&index_call_with_bases_<is_new_index, true, Bases...>>(L);
}
template <typename Key, typename Value>
inline void set(lua_State* L, Key&& key, Value&& value);
};
template <typename T>
inline int destruct_usertype_storage(lua_State* L) {
return detail::user_alloc_destruct<usertype_storage<T>>(L);
}
template <typename T, typename Key, typename Value>
void usertype_storage_base::set(lua_State* L, Key&& key, Value&& value) {
using ValueU = meta::unwrap_unqualified_t<Value>;
using KeyU = meta::unwrap_unqualified_t<Key>;
using Binding = binding<KeyU, ValueU, T>;
using is_var_bind = is_variable_binding<ValueU>;
if constexpr (std::is_same_v<KeyU, call_construction>) {
(void)key;
std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value));
Binding& b = *p_binding;
this->storage.push_back(std::move(p_binding));
this->named_index_table.push();
absolute_index metametatable_index(L, -1);
stack::push(L, nullptr);
stack::push(L, b.data());
lua_CFunction target_func = &b.template call<false, false>;
lua_pushcclosure(L, target_func, 2);
lua_setfield(L, metametatable_index, to_string(meta_function::call).c_str());
this->named_index_table.pop();
}
else if constexpr (std::is_same_v<KeyU, base_classes_tag>) {
(void)key;
this->update_bases<T>(L, std::forward<Value>(value));
}
else if constexpr ((meta::is_string_like_or_constructible<KeyU>::value || std::is_same_v<KeyU, meta_function>)) {
std::string s = u_detail::make_string(std::forward<Key>(key));
auto storage_it = this->storage.end();
auto string_it = this->string_keys.find(s);
if (string_it != this->string_keys.cend()) {
const auto& binding_data = string_it->second.binding_data;
storage_it = std::find_if(this->storage.begin(), this->storage.end(), binding_data_equals(binding_data));
this->string_keys.erase(string_it);
}
std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value));
Binding& b = *p_binding;
if (storage_it != this->storage.cend()) {
*storage_it = std::move(p_binding);
}
else {
this->storage.push_back(std::move(p_binding));
}
bool is_index = (s == to_string(meta_function::index));
bool is_new_index = (s == to_string(meta_function::new_index));
bool is_static_index = (s == to_string(meta_function::static_index));
bool is_static_new_index = (s == to_string(meta_function::static_new_index));
bool is_destruction = s == to_string(meta_function::garbage_collect);
bool poison_indexing = (!is_using_index || !is_using_new_index) && (is_var_bind::value || is_index || is_new_index);
void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this));
index_call_storage ics;
ics.binding_data = b.data();
ics.index = is_index || is_static_index ? &Binding::template call_with_<true, is_var_bind::value>
: &Binding::template index_call_with_<true, is_var_bind::value>;
ics.new_index = is_new_index || is_static_new_index ? &Binding::template call_with_<false, is_var_bind::value>
: &Binding::template index_call_with_<false, is_var_bind::value>;
string_for_each_metatable_func for_each_fx;
for_each_fx.is_destruction = is_destruction;
for_each_fx.is_index = is_index;
for_each_fx.is_new_index = is_new_index;
for_each_fx.is_static_index = is_static_index;
for_each_fx.is_static_new_index = is_static_new_index;
for_each_fx.poison_indexing = poison_indexing;
for_each_fx.p_key = &s;
for_each_fx.p_ics = &ics;
if constexpr (is_lua_c_function_v<ValueU>) {
for_each_fx.is_unqualified_lua_CFunction = true;
for_each_fx.call_func = *static_cast<lua_CFunction*>(ics.binding_data);
}
else if constexpr (is_lua_reference_or_proxy_v<ValueU>) {
for_each_fx.is_unqualified_lua_reference = true;
for_each_fx.p_binding_ref = static_cast<reference*>(ics.binding_data);
}
else {
for_each_fx.call_func = &b.template call<false, is_var_bind::value>;
}
for_each_fx.p_usb = this;
for_each_fx.p_derived_usb = derived_this;
for_each_fx.idx_call = &usertype_storage<T>::template index_call<false>;
for_each_fx.new_idx_call = &usertype_storage<T>::template index_call<true>;
for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call<false>;
for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call<true>;
for_each_fx.change_indexing = &usertype_storage_base::change_indexing;
// set base index and base new_index
// functions here
if (is_index) {
this->base_index.index = ics.index;
this->base_index.binding_data = ics.binding_data;
}
if (is_new_index) {
this->base_index.new_index = ics.new_index;
this->base_index.new_binding_data = ics.binding_data;
}
if (is_static_index) {
this->static_base_index.index = ics.index;
this->static_base_index.binding_data = ics.binding_data;
}
if (is_static_new_index) {
this->static_base_index.new_index = ics.new_index;
this->static_base_index.new_binding_data = ics.binding_data;
}
this->for_each_table(L, for_each_fx);
this->add_entry(s, std::move(ics));
}
else {
// the reference-based implementation might compare poorly and hash
// poorly in some cases...
if constexpr (is_lua_reference_v<KeyU> && is_lua_reference_v<ValueU>) {
if (key.get_type() == type::string) {
stack::push(L, key);
std::string string_key = stack::pop<std::string>(L);
this->set<T>(L, string_key, std::forward<Value>(value));
}
else {
lua_reference_func ref_additions_fx { key, value };
this->for_each_table(L, ref_additions_fx);
this->auxiliary_keys.insert_or_assign(std::forward<Key>(key), std::forward<Value>(value));
}
}
else {
reference ref_key = make_reference(L, std::forward<Key>(key));
reference ref_value = make_reference(L, std::forward<Value>(value));
lua_reference_func ref_additions_fx { key, value };
this->for_each_table(L, ref_additions_fx);
this->auxiliary_keys.insert_or_assign(std::move(ref_key), std::move(ref_value));
}
}
}
template <typename T>
template <typename Key, typename Value>
void usertype_storage<T>::set(lua_State* L, Key&& key, Value&& value) {
static_cast<usertype_storage_base&>(*this).set<T>(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <typename T>
inline usertype_storage<T>& create_usertype_storage(lua_State* L) {
const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
// Make sure userdata's memory is properly in lua first,
// otherwise all the light userdata we make later will become invalid
int usertype_storage_push_count = stack::push<user<usertype_storage<T>>>(L, no_metatable, L);
stack_reference usertype_storage_ref(L, -usertype_storage_push_count);
// create and push onto the stack a table to use as metatable for this GC
// we create a metatable to attach to the regular gc_table
// so that the destructor is called for the usertype storage
int usertype_storage_metatabe_count = stack::push(L, new_table(0, 1));
stack_reference usertype_storage_metatable(L, -usertype_storage_metatabe_count);
// set the destruction routine on the metatable
stack::set_field(L, meta_function::garbage_collect, &destruct_usertype_storage<T>, usertype_storage_metatable.stack_index());
// set the metatable on the usertype storage userdata
stack::set_field(L, metatable_key, usertype_storage_metatable, usertype_storage_ref.stack_index());
usertype_storage_metatable.pop();
// set the usertype storage and its metatable
// into the global table...
stack::set_field<true>(L, gcmetakey, usertype_storage_ref);
usertype_storage_ref.pop();
// then retrieve the lua-stored version so we have a well-pinned
// reference that does not die
stack::get_field<true>(L, gcmetakey);
usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
return target_umt;
}
inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, int index) {
stack::record tracking;
if (!stack::check<user<usertype_storage_base>>(L, index)) {
return nullopt;
}
usertype_storage_base& target_umt = stack::stack_detail::unchecked_unqualified_get<user<usertype_storage_base>>(L, -1, tracking);
return target_umt;
}
inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, const char* gcmetakey) {
stack::get_field<true>(L, gcmetakey);
auto maybe_storage = maybe_get_usertype_storage_base(L, lua_gettop(L));
lua_pop(L, 1);
return maybe_storage;
}
inline usertype_storage_base& get_usertype_storage_base(lua_State* L, const char* gcmetakey) {
stack::get_field<true>(L, gcmetakey);
stack::record tracking;
usertype_storage_base& target_umt = stack::stack_detail::unchecked_unqualified_get<user<usertype_storage_base>>(L, -1, tracking);
lua_pop(L, 1);
return target_umt;
}
template <typename T>
inline optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L) {
const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
stack::get_field<true>(L, gcmetakey);
int target = lua_gettop(L);
if (!stack::check<user<usertype_storage<T>>>(L, target)) {
return nullopt;
}
usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
return target_umt;
}
template <typename T>
inline usertype_storage<T>& get_usertype_storage(lua_State* L) {
const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
stack::get_field<true>(L, gcmetakey);
usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
return target_umt;
}
template <typename T>
inline void delete_usertype_storage(lua_State* L) {
using u_traits = usertype_traits<T>;
#if 0
using u_const_traits = usertype_traits<const T>;
using u_unique_traits = usertype_traits<detail::unique_usertype<T>>;
using u_ref_traits = usertype_traits<T*>;
using u_const_ref_traits = usertype_traits<T const*>;
#endif
using uts = usertype_storage<T>;
const char* gcmetakey = &u_traits::gc_table()[0];
stack::get_field<true>(L, gcmetakey);
if (!stack::check<user<uts>>(L)) {
lua_pop(L, 1);
return;
}
usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
target_umt.clear();
// get the registry
#if 0
stack_reference registry(L, raw_index(LUA_REGISTRYINDEX));
registry.push();
// eliminate all named entries for this usertype
// in the registry (luaL_newmetatable does
// [name] = new table
// in registry upon creation
stack::set_field(L, &u_traits::metatable()[0], lua_nil, registry.stack_index());
stack::set_field(L, &u_const_traits::metatable()[0], lua_nil, registry.stack_index());
stack::set_field(L, &u_const_ref_traits::metatable()[0], lua_nil, registry.stack_index());
stack::set_field(L, &u_ref_traits::metatable()[0], lua_nil, registry.stack_index());
stack::set_field(L, &u_unique_traits::metatable()[0], lua_nil, registry.stack_index());
registry.pop();
#endif // Registry Cleanout
stack::set_field<true>(L, gcmetakey, lua_nil);
}
template <typename T>
inline int register_usertype(lua_State* L, automagic_enrollments enrollments = {}) {
using u_traits = usertype_traits<T>;
using u_const_traits = usertype_traits<const T>;
using u_unique_traits = usertype_traits<detail::unique_usertype<T>>;
using u_ref_traits = usertype_traits<T*>;
using u_const_ref_traits = usertype_traits<T const*>;
using uts = usertype_storage<T>;
// always have __new_index point to usertype_storage method
// have __index always point to regular fast-lookup
// meta_method table
// if __new_index is invoked, runtime-swap
// to slow __index if necessary
// (no speed penalty because function calls
// are all read-only -- only depend on __index
// to retrieve function and then call happens VIA Lua)
// __type entry:
// table contains key -> value lookup,
// where key is entry in metatable
// and value is type information as a string as
// best as we can give it
// name entry:
// string that contains raw class name,
// as defined from C++
// is entry:
// checks if argument supplied is of type T
// __storage entry:
// a light userdata pointing to the storage
// mostly to enable this new abstraction
// to not require the type name `T`
// to get at the C++ usertype storage within
// we then let typical definitions potentially override these intrinsics
// it's the user's fault if they override things or screw them up:
// these names have been reserved and documented since sol3
// STEP 0: tell the old usertype (if it exists)
// to fuck off
delete_usertype_storage<T>(L);
// STEP 1: Create backing store for usertype storage
// Pretty much the most important step.
// STEP 2: Create Lua tables used for fast method indexing.
// This is done inside of the storage table's constructor
usertype_storage<T>& storage = create_usertype_storage<T>(L);
usertype_storage_base& base_storage = storage;
void* light_storage = static_cast<void*>(&storage);
void* light_base_storage = static_cast<void*>(&base_storage);
// STEP 3: set up GC escape hatch table entirely
storage.gc_names_table.push();
stack_reference gnt(L, -1);
stack::set_field(L, submetatable_type::named, &u_traits::gc_table()[0], gnt.stack_index());
stack::set_field(L, submetatable_type::const_value, &u_const_traits::metatable()[0], gnt.stack_index());
stack::set_field(L, submetatable_type::const_reference, &u_const_ref_traits::metatable()[0], gnt.stack_index());
stack::set_field(L, submetatable_type::reference, &u_ref_traits::metatable()[0], gnt.stack_index());
stack::set_field(L, submetatable_type::unique, &u_unique_traits::metatable()[0], gnt.stack_index());
stack::set_field(L, submetatable_type::value, &u_traits::metatable()[0], gnt.stack_index());
gnt.pop();
// STEP 4: add some useful information to the type table
stack_reference stacked_type_table(L, -storage.type_table.push());
stack::set_field(L, "name", detail::demangle<T>(), stacked_type_table.stack_index());
stack::set_field(L, "is", &detail::is_check<T>, stacked_type_table.stack_index());
stacked_type_table.pop();
// STEP 5: create and hook up metatable,
// add intrinsics
// this one is the actual meta-handling table,
// the next one will be the one for
int for_each_backing_metatable_calls = 0;
auto for_each_backing_metatable = [&](lua_State* L, submetatable_type smt, reference& fast_index_table) {
// Pointer types, AKA "references" from C++
const char* metakey = nullptr;
switch (smt) {
case submetatable_type::const_value:
metakey = &u_const_traits::metatable()[0];
break;
case submetatable_type::reference:
metakey = &u_ref_traits::metatable()[0];
break;
case submetatable_type::unique:
metakey = &u_unique_traits::metatable()[0];
break;
case submetatable_type::const_reference:
metakey = &u_const_ref_traits::metatable()[0];
break;
case submetatable_type::named:
metakey = &u_traits::user_metatable()[0];
break;
case submetatable_type::value:
default:
metakey = &u_traits::metatable()[0];
break;
}
luaL_newmetatable(L, metakey);
if (smt == submetatable_type::named) {
// the named table itself
// gets the associated name value
storage.named_metatable = reference(L, -1);
lua_pop(L, 1);
// but the thing we perform the methods on
// is still the metatable of the named
// table
lua_createtable(L, 0, 6);
}
stack_reference t(L, -1);
fast_index_table = reference(t);
stack::set_field<false, true>(L, meta_function::type, storage.type_table, t.stack_index());
if constexpr (std::is_destructible_v<T>) {
// destructible: serialize default
// destructor here
switch (smt) {
case submetatable_type::const_reference:
case submetatable_type::reference:
case submetatable_type::named:
break;
case submetatable_type::unique:
stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::unique_destruct<T>, t.stack_index());
break;
case submetatable_type::value:
case submetatable_type::const_value:
default:
stack::set_field<false, true>(L, meta_function::garbage_collect, detail::make_destructor<T>(), t.stack_index());
break;
}
}
else {
// not destructible: serialize a
// "hey you messed up"
// destructor
switch (smt) {
case submetatable_type::const_reference:
case submetatable_type::reference:
case submetatable_type::named:
break;
case submetatable_type::unique:
stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::cannot_destruct<T>, t.stack_index());
break;
case submetatable_type::value:
case submetatable_type::const_value:
default:
stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::cannot_destruct<T>, t.stack_index());
break;
}
}
static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function),
"The size of this data pointer is too small to fit the inheritance checking function: file a bug "
"report.");
static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function),
"The size of this data pointer is too small to fit the inheritance checking function: file a bug "
"report.");
stack::set_field<false, true>(L, detail::base_class_check_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_check), t.stack_index());
stack::set_field<false, true>(L, detail::base_class_cast_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_cast), t.stack_index());
auto prop_fx = detail::properties_enrollment_allowed(for_each_backing_metatable_calls, storage.properties, enrollments);
auto insert_fx = [&L, &t, &storage](meta_function mf, lua_CFunction reg) {
stack::set_field<false, true>(L, mf, reg, t.stack_index());
storage.properties[static_cast<int>(mf)] = true;
};
detail::insert_default_registrations<T>(insert_fx, prop_fx);
// There are no variables, so serialize the fast function stuff
// be sure to reset the index stuff to the non-fast version
// if the user ever adds something later!
if (smt == submetatable_type::named) {
// add escape hatch storage pointer and gc names
stack::set_field<false, true>(L, meta_function::storage, light_base_storage, t.stack_index());
stack::set_field<false, true>(L, meta_function::gc_names, storage.gc_names_table, t.stack_index());
// fancy new_indexing when using the named table
{
absolute_index named_metatable_index(L, -storage.named_metatable.push());
stack::set_field<false, true>(L, metatable_key, t, named_metatable_index);
storage.named_metatable.pop();
}
stack_reference stack_metametatable(L, -storage.named_index_table.push());
stack::set_field<false, true>(L,
meta_function::index,
make_closure(uts::template meta_index_call<false>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
stack_metametatable.stack_index());
stack::set_field<false, true>(L,
meta_function::new_index,
make_closure(uts::template meta_index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
stack_metametatable.stack_index());
stack_metametatable.pop();
}
else {
// otherwise just plain for index,
// and elaborated for new_index
stack::set_field<false, true>(L, meta_function::index, t, t.stack_index());
stack::set_field<false, true>(L,
meta_function::new_index,
make_closure(uts::template index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
t.stack_index());
storage.is_using_new_index = true;
}
++for_each_backing_metatable_calls;
fast_index_table = reference(L, t);
t.pop();
};
storage.for_each_table(L, for_each_backing_metatable);
// can only use set AFTER we initialize all the metatables
if constexpr (std::is_default_constructible_v<T>) {
if (enrollments.default_constructor) {
storage.set(L, meta_function::construct, constructors<T()>());
}
}
// return the named metatable we want names linked into
storage.named_metatable.push();
return 1;
}
}} // namespace sol::u_detail
// end of sol/usertype_storage.hpp
// beginning of sol/usertype_proxy.hpp
namespace sol {
template <typename Table, typename Key>
struct usertype_proxy : public proxy_base<usertype_proxy<Table, Key>> {
private:
using key_type = detail::proxy_key_t<Key>;
template <typename T, std::size_t... I>
decltype(auto) tuple_get(std::index_sequence<I...>) const & {
return tbl.template traverse_get<T>(std::get<I>(key)...);
}
template <typename T, std::size_t... I>
decltype(auto) tuple_get(std::index_sequence<I...>) && {
return tbl.template traverse_get<T>(std::get<I>(std::move(key))...);
}
template <std::size_t... I, typename T>
void tuple_set(std::index_sequence<I...>, T&& value) & {
if constexpr (sizeof...(I) > 1) {
tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
}
else {
tbl.set(std::get<I>(key)..., std::forward<T>(value));
}
}
template <std::size_t... I, typename T>
void tuple_set(std::index_sequence<I...>, T&& value) && {
if constexpr (sizeof...(I) > 1) {
tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value));
}
else {
tbl.set(std::get<I>(std::move(key))..., std::forward<T>(value));
}
}
public:
Table tbl;
key_type key;
template <typename T>
usertype_proxy(Table table, T&& k)
: tbl(table), key(std::forward<T>(k)) {
}
template <typename T>
usertype_proxy& set(T&& item) & {
using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
tuple_set(idx_seq(), std::forward<T>(item));
return *this;
}
template <typename T>
usertype_proxy&& set(T&& item) && {
using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
std::move(*this).tuple_set(idx_seq(), std::forward<T>(item));
return std::move(*this);
}
template <typename T>
usertype_proxy& operator=(T&& other) & {
return set(std::forward<T>(other));
}
template <typename T>
usertype_proxy&& operator=(T&& other) && {
return std::move(*this).set(std::forward<T>(other));
}
template <typename T>
usertype_proxy& operator=(std::initializer_list<T> other) & {
return set(std::move(other));
}
template <typename T>
usertype_proxy&& operator=(std::initializer_list<T> other) && {
return std::move(*this).set(std::move(other));
}
template <typename T>
decltype(auto) get() const& {
using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
return tuple_get<T>(idx_seq());
}
template <typename T>
decltype(auto) get() && {
using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
return std::move(*this).template tuple_get<T>(idx_seq());
}
template <typename K>
decltype(auto) operator[](K&& k) const& {
auto keys = meta::tuplefy(key, std::forward<K>(k));
return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template <typename K>
decltype(auto) operator[](K&& k) & {
auto keys = meta::tuplefy(key, std::forward<K>(k));
return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template <typename K>
decltype(auto) operator[](K&& k) && {
auto keys = meta::tuplefy(std::move(key), std::forward<K>(k));
return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
#if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000
// MSVC is ass sometimes
return get<function>().call<Ret...>(std::forward<Args>(args)...);
#else
return get<function>().template call<Ret...>(std::forward<Args>(args)...);
#endif
}
template <typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
bool valid() const {
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
lua_pop(lua_state(), p.levels);
return p;
}
int push() const noexcept {
return push(this->lua_state());
}
int push(lua_State* L) const noexcept {
return get<reference>().push(L);
}
type get_type() const {
type t = type::none;
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
if (p) {
t = type_of(lua_state(), -1);
}
lua_pop(lua_state(), p.levels);
return t;
}
lua_State* lua_state() const {
return tbl.lua_state();
}
};
} // namespace sol
// end of sol/usertype_proxy.hpp
// beginning of sol/metatable.hpp
// beginning of sol/table_core.hpp
// beginning of sol/table_proxy.hpp
namespace sol {
template <typename Table, typename Key>
struct table_proxy : public proxy_base<table_proxy<Table, Key>> {
private:
using key_type = detail::proxy_key_t<Key>;
template <typename T, std::size_t... I>
decltype(auto) tuple_get(std::index_sequence<I...>) const& {
return tbl.template traverse_get<T>(std::get<I>(key)...);
}
template <typename T, std::size_t... I>
decltype(auto) tuple_get(std::index_sequence<I...>) && {
return tbl.template traverse_get<T>(std::get<I>(std::move(key))...);
}
template <std::size_t... I, typename T>
void tuple_set(std::index_sequence<I...>, T&& value) & {
tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
}
template <std::size_t... I, typename T>
void tuple_set(std::index_sequence<I...>, T&& value) && {
tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value));
}
auto setup_table(std::true_type) {
auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, tbl.stack_index());
lua_pop(lua_state(), p.levels);
return p;
}
bool is_valid(std::false_type) {
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, lua_gettop(lua_state()));
lua_pop(lua_state(), p.levels);
return p;
}
public:
Table tbl;
key_type key;
template <typename T>
table_proxy(Table table, T&& k) : tbl(table), key(std::forward<T>(k)) {
}
template <typename T>
table_proxy& set(T&& item) & {
tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item));
return *this;
}
template <typename T>
table_proxy&& set(T&& item) && {
tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item));
return std::move(*this);
}
template <typename... Args>
table_proxy& set_function(Args&&... args) & {
tbl.set_function(key, std::forward<Args>(args)...);
return *this;
}
template <typename... Args>
table_proxy&& set_function(Args&&... args) && {
tbl.set_function(std::move(key), std::forward<Args>(args)...);
return std::move(*this);
}
template <typename T>
table_proxy& operator=(T&& other) & {
using Tu = meta::unwrap_unqualified_t<T>;
if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_callable_v<Tu>) {
return set_function(std::forward<T>(other));
}
else {
return set(std::forward<T>(other));
}
}
template <typename T>
table_proxy&& operator=(T&& other) && {
using Tu = meta::unwrap_unqualified_t<T>;
if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_callable_v<Tu>) {
return std::move(*this).set_function(std::forward<T>(other));
}
else {
return std::move(*this).set(std::forward<T>(other));
}
}
template <typename T>
table_proxy& operator=(std::initializer_list<T> other) & {
return set(std::move(other));
}
template <typename T>
table_proxy&& operator=(std::initializer_list<T> other) && {
return std::move(*this).set(std::move(other));
}
template <typename T>
decltype(auto) get() const& {
using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
return tuple_get<T>(idx_seq());
}
template <typename T>
decltype(auto) get() && {
using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
return std::move(*this).template tuple_get<T>(idx_seq());
}
template <typename T>
decltype(auto) get_or(T&& otherwise) const {
typedef decltype(get<T>()) U;
optional<U> option = get<optional<U>>();
if (option) {
return static_cast<U>(option.value());
}
return static_cast<U>(std::forward<T>(otherwise));
}
template <typename T, typename D>
decltype(auto) get_or(D&& otherwise) const {
optional<T> option = get<optional<T>>();
if (option) {
return static_cast<T>(option.value());
}
return static_cast<T>(std::forward<D>(otherwise));
}
template <typename T>
decltype(auto) get_or_create() {
return get_or_create<T>(new_table());
}
template <typename T, typename Otherwise>
decltype(auto) get_or_create(Otherwise&& other) {
if (!this->valid()) {
this->set(std::forward<Otherwise>(other));
}
return get<T>();
}
template <typename K>
decltype(auto) operator[](K&& k) const& {
auto keys = meta::tuplefy(key, std::forward<K>(k));
return table_proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template <typename K>
decltype(auto) operator[](K&& k) & {
auto keys = meta::tuplefy(key, std::forward<K>(k));
return table_proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template <typename K>
decltype(auto) operator[](K&& k) && {
auto keys = meta::tuplefy(std::move(key), std::forward<K>(k));
return table_proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
lua_State* L = this->lua_state();
push(L);
int idx = lua_gettop(L);
stack_aligned_function func(L, idx);
return func.call<Ret...>(std::forward<Args>(args)...);
}
template <typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
bool valid() const {
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
lua_pop(lua_state(), p.levels);
return p;
}
int push() const noexcept {
return push(this->lua_state());
}
int push(lua_State* L) const noexcept {
if constexpr (std::is_same_v<meta::unqualified_t<Table>, global_table> || is_stack_table_v<meta::unqualified_t<Table>>) {
auto pp = stack::push_pop<true>(tbl);
int tableindex = pp.index_of(tbl);
int top_index = lua_gettop(L);
stack::get_field<true>(lua_state(), key, tableindex);
lua_replace(L, top_index + 1);
lua_settop(L, top_index + 1);
}
else {
auto pp = stack::push_pop<false>(tbl);
int tableindex = pp.index_of(tbl);
int aftertableindex = lua_gettop(L);
stack::get_field<false>(lua_state(), key, tableindex);
lua_replace(L, tableindex);
lua_settop(L, aftertableindex + 1);
}
return 1;
}
type get_type() const {
type t = type::none;
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
if (p) {
t = type_of(lua_state(), -1);
}
lua_pop(lua_state(), p.levels);
return t;
}
lua_State* lua_state() const {
return tbl.lua_state();
}
table_proxy& force() {
if (!this->valid()) {
this->set(new_table());
}
return *this;
}
};
template <typename Table, typename Key, typename T>
inline bool operator==(T&& left, const table_proxy<Table, Key>& right) {
using G = decltype(stack::get<T>(nullptr, 0));
return right.template get<optional<G>>() == left;
}
template <typename Table, typename Key, typename T>
inline bool operator==(const table_proxy<Table, Key>& right, T&& left) {
using G = decltype(stack::get<T>(nullptr, 0));
return right.template get<optional<G>>() == left;
}
template <typename Table, typename Key, typename T>
inline bool operator!=(T&& left, const table_proxy<Table, Key>& right) {
using G = decltype(stack::get<T>(nullptr, 0));
return right.template get<optional<G>>() != left;
}
template <typename Table, typename Key, typename T>
inline bool operator!=(const table_proxy<Table, Key>& right, T&& left) {
using G = decltype(stack::get<T>(nullptr, 0));
return right.template get<optional<G>>() != left;
}
template <typename Table, typename Key>
inline bool operator==(lua_nil_t, const table_proxy<Table, Key>& right) {
return !right.valid();
}
template <typename Table, typename Key>
inline bool operator==(const table_proxy<Table, Key>& right, lua_nil_t) {
return !right.valid();
}
template <typename Table, typename Key>
inline bool operator!=(lua_nil_t, const table_proxy<Table, Key>& right) {
return right.valid();
}
template <typename Table, typename Key>
inline bool operator!=(const table_proxy<Table, Key>& right, lua_nil_t) {
return right.valid();
}
template <bool b>
template <typename Super>
basic_reference<b>& basic_reference<b>::operator=(proxy_base<Super>&& r) {
basic_reference<b> v = r;
this->operator=(std::move(v));
return *this;
}
template <bool b>
template <typename Super>
basic_reference<b>& basic_reference<b>::operator=(const proxy_base<Super>& r) {
basic_reference<b> v = r;
this->operator=(std::move(v));
return *this;
}
namespace stack {
template <typename Table, typename Key>
struct unqualified_pusher<table_proxy<Table, Key>> {
static int push(lua_State* L, const table_proxy<Table, Key>& p) {
return p.push(L);
}
};
} // namespace stack
} // namespace sol
// end of sol/table_proxy.hpp
// beginning of sol/table_iterator.hpp
#include <iterator>
namespace sol {
template <typename reference_type>
class basic_table_iterator {
public:
typedef object key_type;
typedef object mapped_type;
typedef std::pair<object, object> value_type;
typedef std::input_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
private:
std::pair<object, object> kvp;
reference_type ref;
int tableidx = 0;
int keyidx = 0;
std::ptrdiff_t idx = 0;
public:
basic_table_iterator() : keyidx(-1), idx(-1) {
}
basic_table_iterator(reference_type x) : ref(std::move(x)) {
ref.push();
tableidx = lua_gettop(ref.lua_state());
stack::push(ref.lua_state(), lua_nil);
this->operator++();
if (idx == -1) {
return;
}
--idx;
}
basic_table_iterator& operator++() {
if (idx == -1)
return *this;
if (lua_next(ref.lua_state(), tableidx) == 0) {
idx = -1;
keyidx = -1;
return *this;
}
++idx;
kvp.first = object(ref.lua_state(), -2);
kvp.second = object(ref.lua_state(), -1);
lua_pop(ref.lua_state(), 1);
// leave key on the stack
keyidx = lua_gettop(ref.lua_state());
return *this;
}
basic_table_iterator operator++(int) {
auto saved = *this;
this->operator++();
return saved;
}
reference operator*() {
return kvp;
}
const_reference operator*() const {
return kvp;
}
bool operator==(const basic_table_iterator& right) const {
return idx == right.idx;
}
bool operator!=(const basic_table_iterator& right) const {
return idx != right.idx;
}
~basic_table_iterator() {
if (keyidx != -1) {
stack::remove(ref.lua_state(), keyidx, 1);
}
if (ref.lua_state() != nullptr && ref.valid()) {
stack::remove(ref.lua_state(), tableidx, 1);
}
}
};
} // namespace sol
// end of sol/table_iterator.hpp
namespace sol {
namespace detail {
template <std::size_t n>
struct clean {
lua_State* L;
clean(lua_State* luastate) : L(luastate) {
}
~clean() {
lua_pop(L, static_cast<int>(n));
}
};
struct ref_clean {
lua_State* L;
int& n;
ref_clean(lua_State* luastate, int& n) : L(luastate), n(n) {
}
~ref_clean() {
lua_pop(L, static_cast<int>(n));
}
};
inline int fail_on_newindex(lua_State* L) {
return luaL_error(L, "sol: cannot modify the elements of an enumeration table");
}
} // namespace detail
template <bool top_level, typename ref_t>
class basic_table_core : public basic_object<ref_t> {
private:
using base_t = basic_object<ref_t>;
friend class state;
friend class state_view;
template <typename, typename>
friend class basic_usertype;
template <typename>
friend class basic_metatable;
template <bool raw, typename... Ret, typename... Keys>
decltype(auto) tuple_get(int table_index, Keys&&... keys) const {
if constexpr (sizeof...(Ret) < 2) {
return traverse_get_single_maybe_tuple<raw, Ret...>(table_index, std::forward<Keys>(keys)...);
}
else {
using multi_ret = decltype(stack::pop<std::tuple<Ret...>>(nullptr));
return multi_ret(traverse_get_single_maybe_tuple<raw, Ret>(table_index, std::forward<Keys>(keys))...);
}
}
template <bool raw, typename Ret, size_t... I, typename Key>
decltype(auto) traverse_get_single_tuple(int table_index, std::index_sequence<I...>, Key&& key) const {
return traverse_get_single<raw, Ret>(table_index, std::get<I>(std::forward<Key>(key))...);
}
template <bool raw, typename Ret, typename Key>
decltype(auto) traverse_get_single_maybe_tuple(int table_index, Key&& key) const {
if constexpr (meta::is_tuple_v<meta::unqualified_t<Key>>) {
return traverse_get_single_tuple<raw, Ret>(
table_index, std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<Key>>>(), std::forward<Key>(key));
}
else {
return traverse_get_single<raw, Ret>(table_index, std::forward<Key>(key));
}
}
template <bool raw, typename Ret, typename... Keys>
decltype(auto) traverse_get_single(int table_index, Keys&&... keys) const {
constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
if constexpr (meta::is_optional_v<meta::unqualified_t<Ret>>) {
int popcount = 0;
detail::ref_clean c(base_t::lua_state(), popcount);
return traverse_get_deep_optional<global, raw, detail::insert_mode::none, Ret>(popcount, table_index, std::forward<Keys>(keys)...);
}
else {
detail::clean<sizeof...(Keys) - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>> c(base_t::lua_state());
return traverse_get_deep<global, raw, detail::insert_mode::none, Ret>(table_index, std::forward<Keys>(keys)...);
}
}
template <bool raw, typename Pairs, std::size_t... I>
void tuple_set(std::index_sequence<I...>, Pairs&& pairs) {
constexpr static bool global = top_level
&& (meta::count_even_for_pack_v<meta::is_c_str, meta::unqualified_t<decltype(std::get<I * 2>(std::forward<Pairs>(pairs)))>...> > 0);
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
lua_State* L = base_t::lua_state();
(void)table_index;
(void)L;
void(detail::swallow { (stack::set_field<(top_level), raw>(
L, std::get<I * 2>(std::forward<Pairs>(pairs)), std::get<I * 2 + 1>(std::forward<Pairs>(pairs)), table_index),
0)... });
}
template <bool global, bool raw, detail::insert_mode mode, typename T, typename Key, typename... Keys>
decltype(auto) traverse_get_deep(int table_index, Key&& key, Keys&&... keys) const {
if constexpr (std::is_same_v<meta::unqualified_t<Key>, create_if_nil_t>) {
(void)key;
return traverse_get_deep<false, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil), T>(
table_index, std::forward<Keys>(keys)...);
}
else {
lua_State* L = base_t::lua_state();
stack::get_field<global, raw>(L, std::forward<Key>(key), table_index);
if constexpr (sizeof...(Keys) > 0) {
if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
type t = type_of(L, -1);
if (t == type::lua_nil || t == type::none) {
lua_pop(L, 1);
stack::push(L, new_table(0, 0));
}
}
return traverse_get_deep<false, raw, mode, T>(lua_gettop(L), std::forward<Keys>(keys)...);
}
else {
if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
type t = type_of(L, -1);
if ((t == type::lua_nil || t == type::none) && (is_table_like_v<T>)) {
lua_pop(L, 1);
stack::push(L, new_table(0, 0));
}
}
return stack::get<T>(L);
}
}
}
template <bool global, bool raw, detail::insert_mode mode, typename T, typename Key, typename... Keys>
decltype(auto) traverse_get_deep_optional(int& popcount, int table_index, Key&& key, Keys&&... keys) const {
if constexpr (std::is_same_v<meta::unqualified_t<Key>, create_if_nil_t>) {
constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil);
(void)key;
return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...);
}
else if constexpr (std::is_same_v<meta::unqualified_t<Key>, update_if_empty_t>) {
constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::update_if_empty);
(void)key;
return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...);
}
else if constexpr (std::is_same_v<meta::unqualified_t<Key>, override_value_t>) {
constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::override_value);
(void)key;
return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...);
}
else {
if constexpr (sizeof...(Keys) > 0) {
lua_State* L = base_t::lua_state();
auto p = stack::probe_get_field<global, raw>(L, std::forward<Key>(key), table_index);
popcount += p.levels;
if (!p.success) {
if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
lua_pop(L, 1);
constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0;
stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq)));
stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
}
else {
return T(nullopt);
}
}
return traverse_get_deep_optional<false, raw, mode, T>(popcount, lua_gettop(L), std::forward<Keys>(keys)...);
}
else {
using R = decltype(stack::get<T>(nullptr));
using value_type = typename meta::unqualified_t<R>::value_type;
lua_State* L = base_t::lua_state();
auto p = stack::probe_get_field<global, raw, value_type>(L, key, table_index);
popcount += p.levels;
if (!p.success) {
if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
lua_pop(L, 1);
stack::push(L, new_table(0, 0));
stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
if (stack::check<value_type>(L, lua_gettop(L), no_panic)) {
return stack::get<T>(L);
}
}
return R(nullopt);
}
return stack::get<T>(L);
}
}
}
template <bool global, bool raw, detail::insert_mode mode, typename Key, typename... Keys>
void traverse_set_deep(int table_index, Key&& key, Keys&&... keys) const {
using KeyU = meta::unqualified_t<Key>;
if constexpr (std::is_same_v<KeyU, update_if_empty_t>) {
(void)key;
traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::update_if_empty)>(
table_index, std::forward<Keys>(keys)...);
}
else if constexpr (std::is_same_v<KeyU, create_if_nil_t>) {
(void)key;
traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil)>(
table_index, std::forward<Keys>(keys)...);
}
else if constexpr (std::is_same_v<KeyU, override_value_t>) {
(void)key;
traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::override_value)>(
table_index, std::forward<Keys>(keys)...);
}
else {
lua_State* L = base_t::lua_state();
if constexpr (sizeof...(Keys) == 1) {
if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty) {
auto p = stack::probe_get_field<global, raw>(L, key, table_index);
lua_pop(L, p.levels);
if (!p.success) {
stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index);
}
}
else {
stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index);
}
}
else {
if constexpr (mode != detail::insert_mode::none) {
stack::get_field<global, raw>(L, key, table_index);
type vt = type_of(L, -1);
if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty
|| (mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
if (vt == type::lua_nil || vt == type::none) {
constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0;
lua_pop(L, 1);
stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq)));
stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
}
}
else {
if (vt != type::table) {
constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0;
lua_pop(L, 1);
stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq)));
stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
}
}
}
else {
stack::get_field<global, raw>(L, std::forward<Key>(key), table_index);
}
traverse_set_deep<false, raw, mode>(lua_gettop(L), std::forward<Keys>(keys)...);
}
}
}
basic_table_core(lua_State* L, detail::global_tag t) noexcept : base_t(L, t) {
}
protected:
basic_table_core(detail::no_safety_tag, lua_nil_t n) : base_t(n) {
}
basic_table_core(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) {
}
basic_table_core(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) {
}
template <typename T,
meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>,
meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) {
}
public:
using iterator = basic_table_iterator<ref_t>;
using const_iterator = iterator;
using base_t::lua_state;
basic_table_core() noexcept = default;
basic_table_core(const basic_table_core&) = default;
basic_table_core(basic_table_core&&) = default;
basic_table_core& operator=(const basic_table_core&) = default;
basic_table_core& operator=(basic_table_core&&) = default;
basic_table_core(const stack_reference& r) : basic_table_core(r.lua_state(), r.stack_index()) {
}
basic_table_core(stack_reference&& r) : basic_table_core(r.lua_state(), r.stack_index()) {
}
template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
int table_index = pp.index_of(*this);
constructor_handler handler {};
stack::check<basic_table_core>(lua_state(), table_index, handler);
#endif // Safety
}
basic_table_core(lua_State* L, const new_table& nt) : base_t(L, -stack::push(L, nt)) {
if (!is_stack_based<meta::unqualified_t<ref_t>>::value) {
lua_pop(L, 1);
}
}
basic_table_core(lua_State* L, int index = -1) : basic_table_core(detail::no_safety, L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler {};
stack::check<basic_table_core>(L, index, handler);
#endif // Safety
}
basic_table_core(lua_State* L, ref_index index) : basic_table_core(detail::no_safety, L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
int table_index = pp.index_of(*this);
constructor_handler handler {};
stack::check<basic_table_core>(lua_state(), table_index, handler);
#endif // Safety
}
template <typename T,
meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>,
meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(T&& r) noexcept : basic_table_core(detail::no_safety, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
if (!is_table<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
int table_index = pp.index_of(*this);
constructor_handler handler {};
stack::check<basic_table_core>(lua_state(), table_index, handler);
}
#endif // Safety
}
basic_table_core(lua_nil_t r) noexcept : basic_table_core(detail::no_safety, r) {
}
iterator begin() const {
if (this->get_type() == type::table) {
return iterator(*this);
}
return iterator();
}
iterator end() const {
return iterator();
}
const_iterator cbegin() const {
return begin();
}
const_iterator cend() const {
return end();
}
void clear() {
auto pp = stack::push_pop<false>(*this);
int table_index = pp.index_of(*this);
stack::clear(lua_state(), table_index);
}
template <typename... Ret, typename... Keys>
decltype(auto) get(Keys&&... keys) const {
static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
constexpr static bool global = meta::all<meta::boolean<top_level>, meta::is_c_str<meta::unqualified_t<Keys>>...>::value;
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
return tuple_get<false, Ret...>(table_index, std::forward<Keys>(keys)...);
}
template <typename T, typename Key>
decltype(auto) get_or(Key&& key, T&& otherwise) const {
typedef decltype(get<T>("")) U;
optional<U> option = get<optional<U>>(std::forward<Key>(key));
if (option) {
return static_cast<U>(option.value());
}
return static_cast<U>(std::forward<T>(otherwise));
}
template <typename T, typename Key, typename D>
decltype(auto) get_or(Key&& key, D&& otherwise) const {
optional<T> option = get<optional<T>>(std::forward<Key>(key));
if (option) {
return static_cast<T>(option.value());
}
return static_cast<T>(std::forward<D>(otherwise));
}
template <typename T, typename... Keys>
decltype(auto) traverse_get(Keys&&... keys) const {
static_assert(sizeof...(Keys) > 0, "must pass at least 1 key to get");
constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
return traverse_get_single<false, T>(table_index, std::forward<Keys>(keys)...);
}
template <typename... Keys>
basic_table_core& traverse_set(Keys&&... keys) {
static_assert(sizeof...(Keys) > 1, "must pass at least 1 key and 1 value to set");
constexpr static bool global
= top_level && (meta::count_when_for_to_pack_v<detail::is_not_insert_mode, 1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
lua_State* L = base_t::lua_state();
auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2 - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>));
traverse_set_deep<top_level, false, detail::insert_mode::none>(table_index, std::forward<Keys>(keys)...);
return *this;
}
template <typename... Args>
basic_table_core& set(Args&&... args) {
if constexpr (sizeof...(Args) == 2) {
traverse_set(std::forward<Args>(args)...);
}
else {
tuple_set<false>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
}
return *this;
}
template <typename... Ret, typename... Keys>
decltype(auto) raw_get(Keys&&... keys) const {
static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
return tuple_get<true, Ret...>(table_index, std::forward<Keys>(keys)...);
}
template <typename T, typename Key>
decltype(auto) raw_get_or(Key&& key, T&& otherwise) const {
typedef decltype(raw_get<T>("")) U;
optional<U> option = raw_get<optional<U>>(std::forward<Key>(key));
if (option) {
return static_cast<U>(option.value());
}
return static_cast<U>(std::forward<T>(otherwise));
}
template <typename T, typename Key, typename D>
decltype(auto) raw_get_or(Key&& key, D&& otherwise) const {
optional<T> option = raw_get<optional<T>>(std::forward<Key>(key));
if (option) {
return static_cast<T>(option.value());
}
return static_cast<T>(std::forward<D>(otherwise));
}
template <typename T, typename... Keys>
decltype(auto) traverse_raw_get(Keys&&... keys) const {
constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
return traverse_get_single<true, T>(table_index, std::forward<Keys>(keys)...);
}
template <typename... Keys>
basic_table_core& traverse_raw_set(Keys&&... keys) {
constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
auto pp = stack::push_pop<global>(*this);
lua_State* L = base_t::lua_state();
auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2 - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>));
traverse_set_deep<top_level, true, false>(std::forward<Keys>(keys)...);
return *this;
}
template <typename... Args>
basic_table_core& raw_set(Args&&... args) {
tuple_set<true>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
return *this;
}
template <typename Class, typename Key>
usertype<Class> new_usertype(Key&& key);
template <typename Class, typename Key>
usertype<Class> new_usertype(Key&& key, automagic_enrollments enrollment);
template <typename Class, typename Key, typename Arg, typename... Args,
typename = std::enable_if_t<!std::is_same_v<meta::unqualified_t<Arg>, automagic_enrollments>>>
usertype<Class> new_usertype(Key&& key, Arg&& arg, Args&&... args);
template <bool read_only = true, typename... Args>
table new_enum(const string_view& name, Args&&... args) {
table target = create_with(std::forward<Args>(args)...);
if (read_only) {
table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target);
table shim = create_named(name, metatable_key, x);
return shim;
}
else {
set(name, target);
return target;
}
}
template <typename T, bool read_only = true>
table new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) {
table target = create(static_cast<int>(items.size()), static_cast<int>(0));
for (const auto& kvp : items) {
target.set(kvp.first, kvp.second);
}
if constexpr (read_only) {
table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target);
table shim = create_named(name, metatable_key, x);
return shim;
}
else {
set(name, target);
return target;
}
}
template <typename Key = object, typename Value = object, typename Fx>
void for_each(Fx&& fx) const {
lua_State* L = base_t::lua_state();
if constexpr (std::is_invocable_v<Fx, Key, Value>) {
auto pp = stack::push_pop(*this);
int table_index = pp.index_of(*this);
stack::push(L, lua_nil);
while (lua_next(L, table_index)) {
Key key(L, -2);
Value value(L, -1);
auto pn = stack::pop_n(L, 1);
fx(key, value);
}
}
else {
auto pp = stack::push_pop(*this);
int table_index = pp.index_of(*this);
stack::push(L, lua_nil);
while (lua_next(L, table_index)) {
Key key(L, -2);
Value value(L, -1);
auto pn = stack::pop_n(L, 1);
std::pair<Key&, Value&> keyvalue(key, value);
fx(keyvalue);
}
}
}
size_t size() const {
auto pp = stack::push_pop(*this);
int table_index = pp.index_of(*this);
lua_State* L = base_t::lua_state();
lua_len(L, table_index);
return stack::pop<size_t>(L);
}
bool empty() const {
return cbegin() == cend();
}
template <typename T>
auto operator[](T&& key) & {
return table_proxy<basic_table_core&, detail::proxy_key_t<T>>(*this, std::forward<T>(key));
}
template <typename T>
auto operator[](T&& key) const& {
return table_proxy<const basic_table_core&, detail::proxy_key_t<T>>(*this, std::forward<T>(key));
}
template <typename T>
auto operator[](T&& key) && {
return table_proxy<basic_table_core, detail::proxy_key_t<T>>(std::move(*this), std::forward<T>(key));
}
template <typename Sig, typename Key, typename... Args>
basic_table_core& set_function(Key&& key, Args&&... args) {
set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename Key, typename... Args>
basic_table_core& set_function(Key&& key, Args&&... args) {
set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename... Args>
basic_table_core& add(Args&&... args) {
auto pp = stack::push_pop(*this);
int table_index = pp.index_of(*this);
lua_State* L = base_t::lua_state();
(void)detail::swallow { 0, (stack::set_ref(L, std::forward<Args>(args), table_index), 0)... };
return *this;
}
private:
template <typename R, typename... Args, typename Fx, typename Key, typename = std::invoke_result_t<Fx, Args...>>
void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) {
set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx));
}
template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
void set_fx(types<>, Key&& key, Fx&& fx) {
set(std::forward<Key>(key), std::forward<Fx>(fx));
}
template <typename Fx, typename Key, typename... Args,
meta::disable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) {
set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...));
}
template <typename... Sig, typename... Args, typename Key>
void set_resolved_function(Key&& key, Args&&... args) {
set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...));
}
public:
static inline table create(lua_State* L, int narr = 0, int nrec = 0) {
lua_createtable(L, narr, nrec);
table result(L);
lua_pop(L, 1);
return result;
}
template <typename Key, typename Value, typename... Args>
static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
lua_createtable(L, narr, nrec);
table result(L);
result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
lua_pop(L, 1);
return result;
}
template <typename... Args>
static inline table create_with(lua_State* L, Args&&... args) {
static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list.");
constexpr int narr = static_cast<int>(meta::count_odd_for_pack_v<std::is_integral, Args...>);
return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...);
}
table create(int narr = 0, int nrec = 0) {
return create(base_t::lua_state(), narr, nrec);
}
template <typename Key, typename Value, typename... Args>
table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename Name>
table create(Name&& name, int narr = 0, int nrec = 0) {
table x = create(base_t::lua_state(), narr, nrec);
this->set(std::forward<Name>(name), x);
return x;
}
template <typename Name, typename Key, typename Value, typename... Args>
table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
this->set(std::forward<Name>(name), x);
return x;
}
template <typename... Args>
table create_with(Args&&... args) {
return create_with(base_t::lua_state(), std::forward<Args>(args)...);
}
template <typename Name, typename... Args>
table create_named(Name&& name, Args&&... args) {
static const int narr = static_cast<int>(meta::count_even_for_pack_v<std::is_integral, Args...>);
return create(std::forward<Name>(name), narr, (sizeof...(Args) / 2) - narr, std::forward<Args>(args)...);
}
};
} // namespace sol
// end of sol/table_core.hpp
namespace sol {
template <typename base_type>
class basic_metatable : public basic_table<base_type> {
typedef basic_table<base_type> base_t;
friend class state;
friend class state_view;
protected:
basic_metatable(detail::no_safety_tag, lua_nil_t n) : base_t(n) {
}
basic_metatable(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) {
}
basic_metatable(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) {
}
template <typename T,
meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_metatable>>, meta::neg<std::is_same<base_type, stack_reference>>,
meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_metatable(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_metatable(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) {
}
public:
using base_t::lua_state;
basic_metatable() noexcept = default;
basic_metatable(const basic_metatable&) = default;
basic_metatable(basic_metatable&&) = default;
basic_metatable& operator=(const basic_metatable&) = default;
basic_metatable& operator=(basic_metatable&&) = default;
basic_metatable(const stack_reference& r) : basic_metatable(r.lua_state(), r.stack_index()) {
}
basic_metatable(stack_reference&& r) : basic_metatable(r.lua_state(), r.stack_index()) {
}
template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_metatable(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_metatable>(lua_state(), -1, handler);
#endif // Safety
}
basic_metatable(lua_State* L, int index = -1) : basic_metatable(detail::no_safety, L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler{};
stack::check<basic_metatable>(L, index, handler);
#endif // Safety
}
basic_metatable(lua_State* L, ref_index index) : basic_metatable(detail::no_safety, L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_metatable>(lua_state(), -1, handler);
#endif // Safety
}
template <typename T,
meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_metatable>>, meta::neg<std::is_same<base_type, stack_reference>>,
meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_metatable(T&& r) noexcept : basic_metatable(detail::no_safety, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
if (!is_table<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_metatable>(base_t::lua_state(), -1, handler);
}
#endif // Safety
}
basic_metatable(lua_nil_t r) noexcept : basic_metatable(detail::no_safety, r) {
}
template <typename Key, typename Value>
void set(Key&& key, Value&& value);
void unregister() {
using ustorage_base = u_detail::usertype_storage_base;
lua_State* L = this->lua_state();
auto pp = stack::push_pop(*this);
int top = lua_gettop(L);
stack_reference mt(L, -1);
stack::get_field(L, meta_function::gc_names, mt.stack_index());
if (type_of(L, -1) != type::table) {
return;
}
stack_reference gc_names_table(L, -1);
stack::get_field(L, meta_function::storage, mt.stack_index());
if (type_of(L, -1) != type::lightuserdata) {
return;
}
ustorage_base& base_storage = *static_cast<ustorage_base*>(stack::get<void*>(L, -1));
std::array<string_view, 6> registry_traits;
for (std::size_t i = 0; i < registry_traits.size(); ++i) {
u_detail::submetatable_type smt = static_cast<u_detail::submetatable_type>(i);
stack::get_field<false, true>(L, smt, gc_names_table.stack_index());
registry_traits[i] = stack::get<string_view>(L, -1);
}
// get the registry
stack_reference registry(L, raw_index(LUA_REGISTRYINDEX));
registry.push();
// eliminate all named entries for this usertype
// in the registry (luaL_newmetatable does
// [name] = new table
// in registry upon creation)
for (std::size_t i = 0; i < registry_traits.size(); ++i) {
u_detail::submetatable_type smt = static_cast<u_detail::submetatable_type>(i);
const string_view& gcmetakey = registry_traits[i];
if (smt == u_detail::submetatable_type::named) {
// use .data() to make it treat it like a c string,
// which it is...
stack::set_field<true>(L, gcmetakey.data(), lua_nil);
}
else {
// do not change the values in the registry: they need to be present
// no matter what, for safety's sake
//stack::set_field(L, gcmetakey, lua_nil, registry.stack_index());
}
}
// destroy all storage and tables
base_storage.clear();
// 6 strings from gc_names table,
// + 1 registry,
// + 1 gc_names table
// + 1 light userdata of storage
// + 1 registry
// 10 total, 4 left since popping off 6 gc_names tables
lua_settop(L, top);
}
};
} // namespace sol
// end of sol/metatable.hpp
namespace sol {
template <typename T, typename base_type>
class basic_usertype : private basic_metatable<base_type> {
private:
using base_t = basic_metatable<base_type>;
using table_base_t = basic_table<base_type>;
template <typename>
friend class basic_metatable;
template <bool, typename>
friend class basic_table_core;
template <std::size_t... I, typename... Args>
void tuple_set(std::index_sequence<I...>, std::tuple<Args...>&& args) {
(void)args;
(void)detail::swallow{ 0,
(this->set(std::get<I * 2>(std::move(args)), std::get<I * 2 + 1>(std::move(args))), 0)... };
}
public:
using base_t::base_t;
using base_t::pop;
using base_t::push;
using base_t::lua_state;
using base_t::get;
using base_t::set_function;
using base_t::traverse_set;
using base_t::traverse_get;
using base_t::unregister;
template <typename Key, typename Value>
void set(Key&& key, Value&& value) {
optional<u_detail::usertype_storage<T>&> maybe_uts = u_detail::maybe_get_usertype_storage<T>(this->lua_state());
if (maybe_uts) {
u_detail::usertype_storage<T>& uts = *maybe_uts;
uts.set(this->lua_state(), std::forward<Key>(key), std::forward<Value>(value));
}
else {
using ValueU = meta::unqualified_t<Value>;
// cannot get metatable: try regular table set?
if constexpr (detail::is_non_factory_constructor_v<ValueU> || detail::is_policy_v<ValueU>) {
// tag constructors so we don't get destroyed by lack of info
table_base_t::set(std::forward<Key>(key), detail::tagged<T, Value>(std::forward<Value>(value)));
}
else {
table_base_t::set(std::forward<Key>(key), std::forward<Value>(value));
}
}
}
template <typename Key>
usertype_proxy<basic_usertype&, std::decay_t<Key>> operator[](Key&& key) {
return usertype_proxy<basic_usertype&, std::decay_t<Key>>(*this, std::forward<Key>(key));
}
template <typename Key>
usertype_proxy<const basic_usertype&, std::decay_t<Key>> operator[](Key&& key) const {
return usertype_proxy<const basic_usertype&, std::decay_t<Key>>(*this, std::forward<Key>(key));
}
};
} // namespace sol
// end of sol/usertype.hpp
// beginning of sol/table.hpp
// beginning of sol/lua_table.hpp
namespace sol {
template <typename ref_t>
struct basic_lua_table : basic_table_core<false, ref_t> {
private:
using base_t = basic_table_core<false, ref_t>;
friend class state;
friend class state_view;
public:
using base_t::lua_state;
basic_lua_table() noexcept = default;
basic_lua_table(const basic_lua_table&) = default;
basic_lua_table(basic_lua_table&&) = default;
basic_lua_table& operator=(const basic_lua_table&) = default;
basic_lua_table& operator=(basic_lua_table&&) = default;
basic_lua_table(const stack_reference& r) : basic_lua_table(r.lua_state(), r.stack_index()) {
}
basic_lua_table(stack_reference&& r) : basic_lua_table(r.lua_state(), r.stack_index()) {
}
template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_lua_table(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_lua_table>(lua_state(), -1, handler);
#endif // Safety
}
basic_lua_table(lua_State* L, const new_table& nt) : base_t(L, nt) {
if (!is_stack_based<meta::unqualified_t<ref_t>>::value) {
lua_pop(L, 1);
}
}
basic_lua_table(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler{};
stack::check<basic_lua_table>(L, index, handler);
#endif // Safety
}
basic_lua_table(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_lua_table>(lua_state(), -1, handler);
#endif // Safety
}
template <typename T,
meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_lua_table>>, meta::neg<std::is_same<ref_t, stack_reference>>,
meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_lua_table(T&& r) noexcept : basic_lua_table(detail::no_safety, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
if (!is_table<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_lua_table>(lua_state(), -1, handler);
}
#endif // Safety
}
basic_lua_table(lua_nil_t r) noexcept : basic_lua_table(detail::no_safety, r) {
}
};
}
// end of sol/lua_table.hpp
namespace sol {
typedef table_core<false> table;
template <bool is_global, typename base_type>
template <typename Class, typename Key>
usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key) {
automagic_enrollments enrollments;
return this->new_usertype<Class>(std::forward<Key>(key), std::move(enrollments));
}
template <bool is_global, typename base_type>
template <typename Class, typename Key>
usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, automagic_enrollments enrollments) {
int mt_index = u_detail::register_usertype<Class>(this->lua_state(), std::move(enrollments));
usertype<Class> mt(this->lua_state(), -mt_index);
lua_pop(this->lua_state(), 1);
set(std::forward<Key>(key), mt);
return mt;
}
template <bool is_global, typename base_type>
template <typename Class, typename Key, typename Arg, typename... Args, typename>
usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, Arg&& arg, Args&&... args) {
automagic_enrollments enrollments;
enrollments.default_constructor = !detail::any_is_constructor_v<Arg, Args...>;
enrollments.destructor = !detail::any_is_destructor_v<Arg, Args...>;
usertype<Class> ut = this->new_usertype<Class>(std::forward<Key>(key), std::move(enrollments));
static_assert(sizeof...(Args) % 2 == static_cast<std::size_t>(!detail::any_is_constructor_v<Arg>),
"you must pass an even number of arguments to new_usertype after first passing a constructor");
if constexpr (detail::any_is_constructor_v<Arg>) {
ut.set(meta_function::construct, std::forward<Arg>(arg));
ut.tuple_set(std::make_index_sequence<(sizeof...(Args)) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
}
else {
ut.tuple_set(std::make_index_sequence<(sizeof...(Args) + 1) / 2>(), std::forward_as_tuple(std::forward<Arg>(arg), std::forward<Args>(args)...));
}
return ut;
}
template <typename base_type>
template <typename Key, typename Value>
void basic_metatable<base_type>::set(Key&& key, Value&& value) {
this->push();
lua_State* L = this->lua_state();
int target = lua_gettop(L);
optional<u_detail::usertype_storage_base&> maybe_uts = u_detail::maybe_get_usertype_storage_base(L, target);
lua_pop(L, 1);
if (maybe_uts) {
u_detail::usertype_storage_base& uts = *maybe_uts;
uts.set(L, std::forward<Key>(key), std::forward<Value>(value));
}
else {
base_t::set(std::forward<Key>(key), std::forward<Value>(value));
}
}
namespace stack {
template <>
struct unqualified_getter<metatable_key_t> {
static table get(lua_State* L, int index = -1) {
if (lua_getmetatable(L, index) == 0) {
return table(L, ref_index(LUA_REFNIL));
}
return table(L, -1);
}
};
} // namespace stack
} // namespace sol
// end of sol/table.hpp
// beginning of sol/state.hpp
// beginning of sol/state_view.hpp
// beginning of sol/environment.hpp
namespace sol {
template <typename base_type>
struct basic_environment : basic_table<base_type> {
private:
typedef basic_table<base_type> base_t;
public:
using base_t::lua_state;
basic_environment() noexcept = default;
basic_environment(const basic_environment&) = default;
basic_environment(basic_environment&&) = default;
basic_environment& operator=(const basic_environment&) = default;
basic_environment& operator=(basic_environment&&) = default;
basic_environment(const stack_reference& r) : basic_environment(r.lua_state(), r.stack_index()) {
}
basic_environment(stack_reference&& r) : basic_environment(r.lua_state(), r.stack_index()) {
}
basic_environment(lua_State* L, new_table nt) : base_t(L, std::move(nt)) {
}
template <bool b>
basic_environment(lua_State* L, new_table t, const basic_reference<b>& fallback) : basic_environment(L, std::move(t)) {
stack_table mt(L, new_table(0, 1));
mt.set(meta_function::index, fallback);
this->set(metatable_key, mt);
mt.pop();
}
basic_environment(env_key_t, const stack_reference& extraction_target)
: base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler {};
stack::check<env_key_t>(this->lua_state(), -1, handler);
#endif // Safety
lua_pop(this->lua_state(), 2);
}
template <bool b>
basic_environment(env_key_t, const basic_reference<b>& extraction_target)
: base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler {};
stack::check<env_key_t>(this->lua_state(), -1, handler);
#endif // Safety
lua_pop(this->lua_state(), 2);
}
basic_environment(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler {};
stack::check<basic_environment>(L, index, handler);
#endif // Safety
}
basic_environment(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler {};
stack::check<basic_environment>(L, -1, handler);
#endif // Safety
}
template <typename T,
meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_environment>>, meta::neg<std::is_same<base_type, stack_reference>>,
meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_environment(T&& r) noexcept : base_t(detail::no_safety, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
if (!is_environment<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler {};
stack::check<basic_environment>(lua_state(), -1, handler);
}
#endif // Safety
}
basic_environment(lua_nil_t r) noexcept : base_t(detail::no_safety, r) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_environment(lua_State* L, T&& r) noexcept : base_t(detail::no_safety, L, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
if (!is_environment<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler {};
stack::check<basic_environment>(lua_state(), -1, handler);
}
#endif // Safety
}
template <typename T>
void set_on(const T& target) const {
lua_State* L = target.lua_state();
auto pp = stack::push_pop(target);
#if SOL_LUA_VESION_I_ < 502
// Use lua_setfenv
this->push();
lua_setfenv(L, -2);
#else
// Use upvalues as explained in Lua 5.2 and beyond's manual
this->push();
const char* name = lua_setupvalue(L, -2, 1);
if (name == nullptr) {
this->pop();
}
#endif
}
};
template <typename T, typename E>
void set_environment(const basic_environment<E>& env, const T& target) {
env.set_on(target);
}
template <typename E = reference, typename T>
basic_environment<E> get_environment(const T& target) {
lua_State* L = target.lua_state();
auto pp = stack::pop_n(L, stack::push_environment_of(target));
return basic_environment<E>(L, -1);
}
struct this_environment {
optional<environment> env;
this_environment() : env(nullopt) {
}
this_environment(environment e) : env(std::move(e)) {
}
this_environment(const this_environment&) = default;
this_environment(this_environment&&) = default;
this_environment& operator=(const this_environment&) = default;
this_environment& operator=(this_environment&&) = default;
explicit operator bool() const {
return static_cast<bool>(env);
}
operator optional<environment> &() {
return env;
}
operator const optional<environment> &() const {
return env;
}
operator environment&() {
return env.value();
}
operator const environment&() const {
return env.value();
}
};
namespace stack {
template <>
struct unqualified_getter<env_key_t> {
static environment get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return get_environment(stack_reference(L, raw_index(index)));
}
};
template <>
struct unqualified_getter<this_environment> {
static this_environment get(lua_State* L, int, record& tracking) {
tracking.use(0);
lua_Debug info;
// Level 0 means current function (this C function, which may or may not be useful for us?)
// Level 1 means next call frame up the stack. (Can be nothing if function called directly from C++ with lua_p/call)
int pre_stack_size = lua_gettop(L);
if (lua_getstack(L, 1, &info) != 1) {
if (lua_getstack(L, 0, &info) != 1) {
lua_settop(L, pre_stack_size);
return this_environment();
}
}
if (lua_getinfo(L, "f", &info) == 0) {
lua_settop(L, pre_stack_size);
return this_environment();
}
stack_reference f(L, -1);
environment env(env_key, f);
if (!env.valid()) {
lua_settop(L, pre_stack_size);
return this_environment();
}
return this_environment(std::move(env));
}
};
} // namespace stack
} // namespace sol
// end of sol/environment.hpp
// beginning of sol/load_result.hpp
#include <cstdint>
namespace sol {
struct load_result : public proxy_base<load_result> {
private:
lua_State* L;
int index;
int returncount;
int popcount;
load_status err;
public:
load_result() noexcept = default;
load_result(lua_State* Ls, int stackindex = -1, int retnum = 0, int popnum = 0, load_status lerr = load_status::ok) noexcept
: L(Ls), index(stackindex), returncount(retnum), popcount(popnum), err(lerr) {
}
// We do not want anyone to copy these around willy-nilly
// Will likely break people, but also will probably get rid of quiet bugs that have
// been lurking. (E.g., Vanilla Lua will just quietly discard over-pops and under-pops:
// LuaJIT and other Lua engines will implode and segfault at random later times.)
load_result(const load_result&) = delete;
load_result& operator=(const load_result&) = delete;
load_result(load_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.L = nullptr;
o.index = 0;
o.returncount = 0;
o.popcount = 0;
o.err = load_status::syntax;
}
load_result& operator=(load_result&& o) noexcept {
L = o.L;
index = o.index;
returncount = o.returncount;
popcount = o.popcount;
err = o.err;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.L = nullptr;
o.index = 0;
o.returncount = 0;
o.popcount = 0;
o.err = load_status::syntax;
return *this;
}
load_status status() const noexcept {
return err;
}
bool valid() const noexcept {
return status() == load_status::ok;
}
template <typename T>
T get() const {
using UT = meta::unqualified_t<T>;
if constexpr (meta::is_optional_v<UT>) {
using ValueType = typename UT::value_type;
if constexpr (std::is_same_v<ValueType, error>) {
if (valid()) {
return UT(nullopt);
}
return error(detail::direct_error, stack::get<std::string>(L, index));
}
else {
if (!valid()) {
return UT(nullopt);
}
return stack::get<UT>(L, index);
}
}
else {
if constexpr (std::is_same_v<T, error>) {
#if SOL_IS_ON(SOL_SAFE_PROXIES_I_)
if (valid()) {
type_panic_c_str(L, index, type_of(L, index), type::none, "expecting an error type (a string, from Lua)");
}
#endif // Check proxy type's safety
return error(detail::direct_error, stack::get<std::string>(L, index));
}
else {
#if SOL_IS_ON(SOL_SAFE_PROXIES_I_)
if (!valid()) {
type_panic_c_str(L, index, type_of(L, index), type::none);
}
#endif // Check proxy type's safety
return stack::get<T>(L, index);
}
}
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
#if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000
// MSVC is ass sometimes
return get<protected_function>().call<Ret...>(std::forward<Args>(args)...);
#else
return get<protected_function>().template call<Ret...>(std::forward<Args>(args)...);
#endif
}
template <typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
lua_State* lua_state() const noexcept {
return L;
};
int stack_index() const noexcept {
return index;
};
~load_result() {
stack::remove(L, index, popcount);
}
};
} // namespace sol
// end of sol/load_result.hpp
// beginning of sol/state_handling.hpp
// beginning of sol/lua_value.hpp
namespace sol {
struct lua_value {
public:
struct arr : detail::ebco<std::initializer_list<lua_value>> {
private:
using base_t = detail::ebco<std::initializer_list<lua_value>>;
public:
using base_t::base_t;
};
private:
template <typename T>
using is_reference_or_lua_value_init_list
= meta::any<meta::is_specialization_of<T, std::initializer_list>, std::is_same<T, reference>, std::is_same<T, arr>>;
template <typename T>
using is_lua_value_single_constructible = meta::any<std::is_same<T, lua_value>, is_reference_or_lua_value_init_list<T>>;
static lua_State*& thread_local_lua_state() {
#if SOL_IS_ON(SOL_USE_THREAD_LOCAL_I_)
static thread_local lua_State* L = nullptr;
#else
static lua_State* L = nullptr;
#endif
return L;
}
reference ref_value;
public:
static void set_lua_state(lua_State* L) {
thread_local_lua_state() = L;
}
template <typename T, meta::disable<is_reference_or_lua_value_init_list<meta::unqualified_t<T>>> = meta::enabler>
lua_value(lua_State* L_, T&& value) : lua_value(((set_lua_state(L_)), std::forward<T>(value))) {
}
template <typename T, meta::disable<is_lua_value_single_constructible<meta::unqualified_t<T>>> = meta::enabler>
lua_value(T&& value) : ref_value(make_reference(thread_local_lua_state(), std::forward<T>(value))) {
}
lua_value(lua_State* L_, std::initializer_list<std::pair<lua_value, lua_value>> il)
: lua_value([&L_, &il]() {
set_lua_state(L_);
return std::move(il);
}()) {
}
lua_value(std::initializer_list<std::pair<lua_value, lua_value>> il) : ref_value(make_reference(thread_local_lua_state(), std::move(il))) {
}
lua_value(lua_State* L_, arr il)
: lua_value([&L_, &il]() {
set_lua_state(L_);
return std::move(il);
}()) {
}
lua_value(arr il) : ref_value(make_reference(thread_local_lua_state(), std::move(il.value()))) {
}
lua_value(lua_State* L_, reference r)
: lua_value([&L_, &r]() {
set_lua_state(L_);
return std::move(r);
}()) {
}
lua_value(reference r) : ref_value(std::move(r)) {
}
lua_value(const lua_value&) noexcept = default;
lua_value(lua_value&&) = default;
lua_value& operator=(const lua_value&) = default;
lua_value& operator=(lua_value&&) = default;
const reference& value() const& {
return ref_value;
}
reference& value() & {
return ref_value;
}
reference&& value() && {
return std::move(ref_value);
}
template <typename T>
decltype(auto) as() const {
ref_value.push();
return stack::pop<T>(ref_value.lua_state());
}
template <typename T>
bool is() const {
int r = ref_value.registry_index();
if (r == LUA_REFNIL)
return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
if (r == LUA_NOREF)
return false;
auto pp = stack::push_pop(ref_value);
return stack::check<T>(ref_value.lua_state(), -1, no_panic);
}
};
using array_value = typename lua_value::arr;
namespace stack {
template <>
struct unqualified_pusher<lua_value> {
static int push(lua_State* L, const lua_value& lv) {
return stack::push(L, lv.value());
}
static int push(lua_State* L, lua_value&& lv) {
return stack::push(L, std::move(lv).value());
}
};
template <>
struct unqualified_getter<lua_value> {
static lua_value get(lua_State* L, int index, record& tracking) {
return lua_value(L, stack::get<reference>(L, index, tracking));
}
};
} // namespace stack
} // namespace sol
// end of sol/lua_value.hpp
#if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
#include <iostream>
#endif
namespace sol {
inline void register_main_thread(lua_State* L) {
#if SOL_LUA_VESION_I_ < 502
if (L == nullptr) {
lua_pushnil(L);
lua_setglobal(L, detail::default_main_thread_name());
return;
}
lua_pushthread(L);
lua_setglobal(L, detail::default_main_thread_name());
#else
(void)L;
#endif
}
inline int default_at_panic(lua_State* L) {
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
(void)L;
return -1;
#else
size_t messagesize;
const char* message = lua_tolstring(L, -1, &messagesize);
if (message) {
std::string err(message, messagesize);
lua_settop(L, 0);
#if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
std::cerr << "[sol3] An error occurred and panic has been invoked: ";
std::cerr << err;
std::cerr << std::endl;
#endif
throw error(err);
}
lua_settop(L, 0);
throw error(std::string("An unexpected error occurred and panic has been invoked"));
#endif // Printing Errors
}
inline int default_traceback_error_handler(lua_State* L) {
std::string msg = "An unknown error has triggered the default error handler";
optional<string_view> maybetopmsg = stack::unqualified_check_get<string_view>(L, 1, no_panic);
if (maybetopmsg) {
const string_view& topmsg = maybetopmsg.value();
msg.assign(topmsg.data(), topmsg.size());
}
luaL_traceback(L, L, msg.c_str(), 1);
optional<string_view> maybetraceback = stack::unqualified_check_get<string_view>(L, -1, no_panic);
if (maybetraceback) {
const string_view& traceback = maybetraceback.value();
msg.assign(traceback.data(), traceback.size());
}
#if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
// std::cerr << "[sol3] An error occurred and was caught in traceback: ";
// std::cerr << msg;
// std::cerr << std::endl;
#endif // Printing
return stack::push(L, msg);
}
inline void set_default_state(lua_State* L, lua_CFunction panic_function = &default_at_panic,
lua_CFunction traceback_function = c_call<decltype(&default_traceback_error_handler), &default_traceback_error_handler>,
exception_handler_function exf = detail::default_exception_handler) {
lua_atpanic(L, panic_function);
protected_function::set_default_handler(object(L, in_place, traceback_function));
set_default_exception_handler(L, exf);
register_main_thread(L);
stack::luajit_exception_handler(L);
lua_value::set_lua_state(L);
}
inline std::size_t total_memory_used(lua_State* L) {
std::size_t kb = lua_gc(L, LUA_GCCOUNT, 0);
kb *= 1024;
kb += lua_gc(L, LUA_GCCOUNTB, 0);
return kb;
}
inline protected_function_result script_pass_on_error(lua_State*, protected_function_result result) {
return result;
}
inline protected_function_result script_throw_on_error(lua_State* L, protected_function_result result) {
type t = type_of(L, result.stack_index());
std::string err = "sol: ";
err += to_string(result.status());
err += " error";
#if SOL_IS_ON(SOL_EXCEPTIONS_I_)
std::exception_ptr eptr = std::current_exception();
if (eptr) {
err += " with a ";
try {
std::rethrow_exception(eptr);
}
catch (const std::exception& ex) {
err += "std::exception -- ";
err.append(ex.what());
}
catch (const std::string& message) {
err += "thrown message -- ";
err.append(message);
}
catch (const char* message) {
err += "thrown message -- ";
err.append(message);
}
catch (...) {
err.append("thrown but unknown type, cannot serialize into error message");
}
}
#endif // serialize exception information if possible
if (t == type::string) {
err += ": ";
string_view serr = stack::unqualified_get<string_view>(L, result.stack_index());
err.append(serr.data(), serr.size());
}
#if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
std::cerr << "[sol3] An error occurred and has been passed to an error handler: ";
std::cerr << err;
std::cerr << std::endl;
#endif
// replacing information of stack error into pfr
int target = result.stack_index();
if (result.pop_count() > 0) {
stack::remove(L, target, result.pop_count());
}
stack::push(L, err);
int top = lua_gettop(L);
int towards = top - target;
if (towards != 0) {
lua_rotate(L, top, towards);
}
#if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
return result;
#else
// just throw our error
throw error(detail::direct_error, err);
#endif // If exceptions are allowed
}
inline protected_function_result script_default_on_error(lua_State* L, protected_function_result pfr) {
#if SOL_IS_ON(SOL_DEFAULT_PASS_ON_ERROR_I_)
return script_pass_on_error(L, std::move(pfr));
#else
return script_throw_on_error(L, std::move(pfr));
#endif
}
namespace stack {
inline error get_traceback_or_errors(lua_State* L) {
int p = default_traceback_error_handler(L);
sol::error err = stack::get<sol::error>(L, -p);
lua_pop(L, p);
return err;
}
} // namespace stack
} // namespace sol
// end of sol/state_handling.hpp
#include <memory>
#include <cstddef>
namespace sol {
class state_view {
private:
lua_State* L;
table reg;
global_table global;
optional<object> is_loaded_package(const std::string& key) {
auto loaded = reg.traverse_get<optional<object>>("_LOADED", key);
bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>());
if (is53mod)
return loaded;
#if SOL_LUA_VESION_I_ <= 501
auto loaded51 = global.traverse_get<optional<object>>("package", "loaded", key);
bool is51mod = loaded51 && !(loaded51->is<bool>() && !loaded51->as<bool>());
if (is51mod)
return loaded51;
#endif
return nullopt;
}
template <typename T>
void ensure_package(const std::string& key, T&& sr) {
#if SOL_LUA_VESION_I_ <= 501
auto pkg = global["package"];
if (!pkg.valid()) {
pkg = create_table_with("loaded", create_table_with(key, sr));
}
else {
auto ld = pkg["loaded"];
if (!ld.valid()) {
ld = create_table_with(key, sr);
}
else {
ld[key] = sr;
}
}
#endif
auto loaded = reg["_LOADED"];
if (!loaded.valid()) {
loaded = create_table_with(key, sr);
}
else {
loaded[key] = sr;
}
}
template <typename Fx>
object require_core(const std::string& key, Fx&& action, bool create_global = true) {
optional<object> loaded = is_loaded_package(key);
if (loaded && loaded->valid())
return std::move(*loaded);
action();
stack_reference sr(L, -1);
if (create_global)
set(key, sr);
ensure_package(key, sr);
return stack::pop<object>(L);
}
public:
using iterator = typename global_table::iterator;
using const_iterator = typename global_table::const_iterator;
state_view(lua_State* Ls) : L(Ls), reg(Ls, LUA_REGISTRYINDEX), global(Ls, detail::global_) {
}
state_view(this_state Ls) : state_view(Ls.L) {
}
lua_State* lua_state() const {
return L;
}
template <typename... Args>
void open_libraries(Args&&... args) {
static_assert(meta::all_same<lib, meta::unqualified_t<Args>...>::value, "all types must be libraries");
if constexpr (sizeof...(args) == 0) {
luaL_openlibs(L);
return;
}
else {
lib libraries[1 + sizeof...(args)] = { lib::count, std::forward<Args>(args)... };
for (auto&& library : libraries) {
switch (library) {
#if SOL_LUA_VESION_I_ <= 501 && defined(SOL_LUAJIT)
case lib::coroutine:
#endif // luajit opens coroutine base stuff
case lib::base:
luaL_requiref(L, "base", luaopen_base, 1);
lua_pop(L, 1);
break;
case lib::package:
luaL_requiref(L, "package", luaopen_package, 1);
lua_pop(L, 1);
break;
#if !defined(SOL_LUAJIT)
case lib::coroutine:
#if SOL_LUA_VESION_I_ > 501
luaL_requiref(L, "coroutine", luaopen_coroutine, 1);
lua_pop(L, 1);
#endif // Lua 5.2+ only
break;
#endif // Not LuaJIT - comes builtin
case lib::string:
luaL_requiref(L, "string", luaopen_string, 1);
lua_pop(L, 1);
break;
case lib::table:
luaL_requiref(L, "table", luaopen_table, 1);
lua_pop(L, 1);
break;
case lib::math:
luaL_requiref(L, "math", luaopen_math, 1);
lua_pop(L, 1);
break;
case lib::bit32:
#ifdef SOL_LUAJIT
luaL_requiref(L, "bit32", luaopen_bit, 1);
lua_pop(L, 1);
#elif (SOL_LUA_VESION_I_ == 502) || defined(LUA_COMPAT_BITLIB) || defined(LUA_COMPAT_5_2)
luaL_requiref(L, "bit32", luaopen_bit32, 1);
lua_pop(L, 1);
#else
#endif // Lua 5.2 only (deprecated in 5.3 (503)) (Can be turned on with Compat flags)
break;
case lib::io:
luaL_requiref(L, "io", luaopen_io, 1);
lua_pop(L, 1);
break;
case lib::os:
luaL_requiref(L, "os", luaopen_os, 1);
lua_pop(L, 1);
break;
case lib::debug:
luaL_requiref(L, "debug", luaopen_debug, 1);
lua_pop(L, 1);
break;
case lib::utf8:
#if SOL_LUA_VESION_I_ > 502 && !defined(SOL_LUAJIT)
luaL_requiref(L, "utf8", luaopen_utf8, 1);
lua_pop(L, 1);
#endif // Lua 5.3+ only
break;
case lib::ffi:
#ifdef SOL_LUAJIT
luaL_requiref(L, "ffi", luaopen_ffi, 1);
lua_pop(L, 1);
#endif // LuaJIT only
break;
case lib::jit:
#ifdef SOL_LUAJIT
luaL_requiref(L, "jit", luaopen_jit, 0);
lua_pop(L, 1);
#endif // LuaJIT Only
break;
case lib::count:
default:
break;
}
}
}
}
object require(const std::string& key, lua_CFunction open_function, bool create_global = true) {
luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0);
return stack::pop<object>(L);
}
object require_script(const std::string& key, const string_view& code, bool create_global = true,
const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
auto action = [this, &code, &chunkname, &mode]() { stack::script(L, code, chunkname, mode); };
return require_core(key, action, create_global);
}
object require_file(const std::string& key, const std::string& filename, bool create_global = true, load_mode mode = load_mode::any) {
auto action = [this, &filename, &mode]() { stack::script_file(L, filename, mode); };
return require_core(key, action, create_global);
}
void clear_package_loaders() {
optional<table> maybe_package = this->global["package"];
if (!maybe_package) {
// package lib wasn't opened
// open package lib
return;
}
table& package = *maybe_package;
// yay for version differences...
// one day Lua 5.1 will die a peaceful death
// and its old bones will find blissful rest
auto loaders_proxy = package
#if SOL_LUA_VESION_I_ < 502
["loaders"]
#else
["searchers"]
#endif
;
if (!loaders_proxy.valid()) {
// nothing to clear
return;
}
// we need to create the table for loaders
// table does not exist, so create and move forward
loaders_proxy = new_table(1, 0);
}
template <typename Fx>
void add_package_loader(Fx&& fx, bool clear_all_package_loaders = false) {
optional<table> maybe_package = this->global["package"];
if (!maybe_package) {
// package lib wasn't opened
// open package lib
return;
}
table& package = *maybe_package;
// yay for version differences...
// one day Lua 5.1 will die a peaceful death
// and its old bones will find blissful rest
auto loaders_proxy = package
#if SOL_LUA_VESION_I_ < 502
["loaders"]
#else
["searchers"]
#endif
;
bool make_new_table = clear_all_package_loaders || !loaders_proxy.valid();
if (make_new_table) {
// we need to create the table for loaders
// table does not exist, so create and move forward
loaders_proxy = new_table(1, 0);
}
optional<table> maybe_loaders = loaders_proxy;
if (!maybe_loaders) {
// loaders/searches
// thing exists in package, but it
// ain't a table or a table-alike...!
return;
}
table loaders = loaders_proxy;
loaders.add(std::forward<Fx>(fx));
}
template <typename E>
protected_function_result do_reader(lua_Reader reader, void* data, const basic_environment<E>& env,
const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
if (x != load_status::ok) {
return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
}
stack_aligned_protected_function pf(L, -1);
set_environment(env, pf);
return pf();
}
protected_function_result do_reader(
lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
if (x != load_status::ok) {
return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
}
stack_aligned_protected_function pf(L, -1);
return pf();
}
template <typename E>
protected_function_result do_string(const string_view& code, const basic_environment<E>& env,
const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
if (x != load_status::ok) {
return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
}
stack_aligned_protected_function pf(L, -1);
set_environment(env, pf);
return pf();
}
protected_function_result do_string(
const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
if (x != load_status::ok) {
return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
}
stack_aligned_protected_function pf(L, -1);
return pf();
}
template <typename E>
protected_function_result do_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
if (x != load_status::ok) {
return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
}
stack_aligned_protected_function pf(L, -1);
set_environment(env, pf);
return pf();
}
protected_function_result do_file(const std::string& filename, load_mode mode = load_mode::any) {
load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
if (x != load_status::ok) {
return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
}
stack_aligned_protected_function pf(L, -1);
return pf();
}
template <typename Fx,
meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
protected_function_result safe_script(
lua_Reader reader, void* data, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
protected_function_result pfr = do_reader(reader, data, chunkname, mode);
if (!pfr.valid()) {
return on_error(L, std::move(pfr));
}
return pfr;
}
protected_function_result safe_script(
lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(reader, data, script_default_on_error, chunkname, mode);
}
template <typename Fx,
meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
protected_function_result safe_script(
const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
protected_function_result pfr = do_string(code, chunkname, mode);
if (!pfr.valid()) {
return on_error(L, std::move(pfr));
}
return pfr;
}
template <typename Fx, typename E>
protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, Fx&& on_error,
const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
protected_function_result pfr = do_string(code, env, chunkname, mode);
if (!pfr.valid()) {
return on_error(L, std::move(pfr));
}
return pfr;
}
template <typename E>
protected_function_result safe_script(const string_view& code, const basic_environment<E>& env,
const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, env, script_default_on_error, chunkname, mode);
}
protected_function_result safe_script(
const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, script_default_on_error, chunkname, mode);
}
template <typename Fx,
meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
protected_function_result safe_script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) {
protected_function_result pfr = do_file(filename, mode);
if (!pfr.valid()) {
return on_error(L, std::move(pfr));
}
return pfr;
}
template <typename Fx, typename E>
protected_function_result safe_script_file(
const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) {
protected_function_result pfr = do_file(filename, env, mode);
if (!pfr.valid()) {
return on_error(L, std::move(pfr));
}
return pfr;
}
template <typename E>
protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
return safe_script_file(filename, env, script_default_on_error, mode);
}
protected_function_result safe_script_file(const std::string& filename, load_mode mode = load_mode::any) {
return safe_script_file(filename, script_default_on_error, mode);
}
template <typename E>
unsafe_function_result unsafe_script(lua_Reader reader, void* data, const basic_environment<E>& env,
const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
int index = lua_gettop(L);
if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())) {
lua_error(L);
}
set_environment(env, stack_reference(L, raw_index(index + 1)));
if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
int postindex = lua_gettop(L);
int returns = postindex - index;
return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
unsafe_function_result unsafe_script(
lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
int index = lua_gettop(L);
stack::script(L, reader, data, chunkname, mode);
int postindex = lua_gettop(L);
int returns = postindex - index;
return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
template <typename E>
unsafe_function_result unsafe_script(const string_view& code, const basic_environment<E>& env,
const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
int index = lua_gettop(L);
if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())) {
lua_error(L);
}
set_environment(env, stack_reference(L, raw_index(index + 1)));
if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
int postindex = lua_gettop(L);
int returns = postindex - index;
return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
unsafe_function_result unsafe_script(
const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
int index = lua_gettop(L);
stack::script(L, code, chunkname, mode);
int postindex = lua_gettop(L);
int returns = postindex - index;
return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
template <typename E>
unsafe_function_result unsafe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
int index = lua_gettop(L);
if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())) {
lua_error(L);
}
set_environment(env, stack_reference(L, raw_index(index + 1)));
if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
int postindex = lua_gettop(L);
int returns = postindex - index;
return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
unsafe_function_result unsafe_script_file(const std::string& filename, load_mode mode = load_mode::any) {
int index = lua_gettop(L);
stack::script_file(L, filename, mode);
int postindex = lua_gettop(L);
int returns = postindex - index;
return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
template <typename Fx,
meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
protected_function_result script(
const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, std::forward<Fx>(on_error), chunkname, mode);
}
template <typename Fx,
meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
protected_function_result script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) {
return safe_script_file(filename, std::forward<Fx>(on_error), mode);
}
template <typename Fx, typename E>
protected_function_result script(const string_view& code, const basic_environment<E>& env, Fx&& on_error,
const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, env, std::forward<Fx>(on_error), chunkname, mode);
}
template <typename Fx, typename E>
protected_function_result script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) {
return safe_script_file(filename, env, std::forward<Fx>(on_error), mode);
}
protected_function_result script(
const string_view& code, const environment& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, env, script_default_on_error, chunkname, mode);
}
protected_function_result script_file(const std::string& filename, const environment& env, load_mode mode = load_mode::any) {
return safe_script_file(filename, env, script_default_on_error, mode);
}
#if SOL_IS_ON(SOL_SAFE_FUNCTION_OBJECTS_I_)
protected_function_result script(
lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(reader, data, chunkname, mode);
}
protected_function_result script(
const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, chunkname, mode);
}
protected_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) {
return safe_script_file(filename, mode);
}
#else
unsafe_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return unsafe_script(code, chunkname, mode);
}
unsafe_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) {
return unsafe_script_file(filename, mode);
}
#endif
load_result load(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
return load_result(L, absolute_index(L, -1), 1, 1, x);
}
load_result load_buffer(const char* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return load(string_view(buff, size), chunkname, mode);
}
load_result load_buffer(
const std::byte* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return load(string_view(reinterpret_cast<const char*>(buff), size), chunkname, mode);
}
load_result load_file(const std::string& filename, load_mode mode = load_mode::any) {
load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
return load_result(L, absolute_index(L, -1), 1, 1, x);
}
load_result load(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
return load_result(L, absolute_index(L, -1), 1, 1, x);
}
iterator begin() const {
return global.begin();
}
iterator end() const {
return global.end();
}
const_iterator cbegin() const {
return global.cbegin();
}
const_iterator cend() const {
return global.cend();
}
global_table globals() const {
// if we return a reference
// we'll be screwed a bit
return global;
}
global_table& globals() {
return global;
}
table registry() const {
return reg;
}
std::size_t memory_used() const {
return total_memory_used(lua_state());
}
int stack_top() const {
return stack::top(L);
}
int stack_clear() {
int s = stack_top();
lua_pop(L, s);
return s;
}
bool supports_gc_mode(gc_mode mode) const noexcept {
#if SOL_LUA_VESION_I_ >= 504
// supports all modes
(void)mode;
return true;
#endif
return mode == gc_mode::default_value;
}
bool is_gc_on() const {
#if SOL_LUA_VESION_I_ >= 502
return lua_gc(lua_state(), LUA_GCISRUNNING, 0) == 1;
#else
// You cannot turn it off in Lua 5.1
return true;
#endif
}
void collect_garbage() {
lua_gc(lua_state(), LUA_GCCOLLECT, 0);
}
void collect_gc() {
collect_garbage();
}
bool step_gc(int step_size_kilobytes) {
// THOUGHT: std::chrono-alikes to map "kilobyte size" here...?
// Make it harder to give MB or KB to a B parameter...?
// Probably overkill for now.
#if SOL_LUA_VESION_I_ >= 504
// The manual implies that this function is almost always successful...
// is it?? It could depend on the GC mode...
return lua_gc(lua_state(), LUA_GCSTEP, step_size_kilobytes) != 0;
#else
return lua_gc(lua_state(), LUA_GCSTEP, step_size_kilobytes) == 1;
#endif
}
void restart_gc() {
lua_gc(lua_state(), LUA_GCRESTART, 0);
}
void stop_gc() {
lua_gc(lua_state(), LUA_GCSTOP, 0);
}
// Returns the old GC mode. Check support using the supports_gc_mode function.
gc_mode change_gc_mode_incremental(int pause, int step_multiplier, int step_byte_size) {
// "What the fuck does any of this mean??"
// http://www.lua.org/manual/5.4/manual.html#2.5.1
// THOUGHT: std::chrono-alikes to map "byte size" here...?
// Make it harder to give MB or KB to a B parameter...?
// Probably overkill for now.
#if SOL_LUA_VESION_I_ >= 504
int old_mode = lua_gc(lua_state(), LUA_GCINC, pause, step_multiplier, step_byte_size);
if (old_mode == LUA_GCGEN) {
return gc_mode::generational;
}
else if (old_mode == LUA_GCINC) {
return gc_mode::incremental;
}
#else
lua_gc(lua_state(), LUA_GCSETPAUSE, pause);
lua_gc(lua_state(), LUA_GCSETSTEPMUL, step_multiplier);
(void)step_byte_size; // means nothing in older versions
#endif
return gc_mode::default_value;
}
// Returns the old GC mode. Check support using the supports_gc_mode function.
gc_mode change_gc_mode_generational(int minor_multiplier, int major_multiplier) {
#if SOL_LUA_VESION_I_ >= 504
// "What does this shit mean?"
// http://www.lua.org/manual/5.4/manual.html#2.5.2
int old_mode = lua_gc(lua_state(), LUA_GCGEN, minor_multiplier, major_multiplier);
if (old_mode == LUA_GCGEN) {
return gc_mode::generational;
}
else if (old_mode == LUA_GCINC) {
return gc_mode::incremental;
}
#endif
return gc_mode::default_value;
}
operator lua_State*() const {
return lua_state();
}
void set_panic(lua_CFunction panic) {
lua_atpanic(lua_state(), panic);
}
void set_exception_handler(exception_handler_function handler) {
set_default_exception_handler(lua_state(), handler);
}
template <typename... Args, typename... Keys>
decltype(auto) get(Keys&&... keys) const {
return global.get<Args...>(std::forward<Keys>(keys)...);
}
template <typename T, typename Key>
decltype(auto) get_or(Key&& key, T&& otherwise) const {
return global.get_or(std::forward<Key>(key), std::forward<T>(otherwise));
}
template <typename T, typename Key, typename D>
decltype(auto) get_or(Key&& key, D&& otherwise) const {
return global.get_or<T>(std::forward<Key>(key), std::forward<D>(otherwise));
}
template <typename... Args>
state_view& set(Args&&... args) {
global.set(std::forward<Args>(args)...);
return *this;
}
template <typename T, typename... Keys>
decltype(auto) traverse_get(Keys&&... keys) const {
return global.traverse_get<T>(std::forward<Keys>(keys)...);
}
template <typename... Args>
state_view& traverse_set(Args&&... args) {
global.traverse_set(std::forward<Args>(args)...);
return *this;
}
template <typename Class, typename... Args>
usertype<Class> new_usertype(const std::string& name, Args&&... args) {
return global.new_usertype<Class>(name, std::forward<Args>(args)...);
}
template <bool read_only = true, typename... Args>
state_view& new_enum(const string_view& name, Args&&... args) {
global.new_enum<read_only>(name, std::forward<Args>(args)...);
return *this;
}
template <typename T, bool read_only = true>
state_view& new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) {
global.new_enum<T, read_only>(name, std::move(items));
return *this;
}
template <typename Fx>
void for_each(Fx&& fx) {
global.for_each(std::forward<Fx>(fx));
}
template <typename T>
table_proxy<global_table&, detail::proxy_key_t<T>> operator[](T&& key) {
return global[std::forward<T>(key)];
}
template <typename T>
table_proxy<const global_table&, detail::proxy_key_t<T>> operator[](T&& key) const {
return global[std::forward<T>(key)];
}
template <typename Sig, typename... Args, typename Key>
state_view& set_function(Key&& key, Args&&... args) {
global.set_function<Sig>(std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename... Args, typename Key>
state_view& set_function(Key&& key, Args&&... args) {
global.set_function(std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename Name>
table create_table(Name&& name, int narr = 0, int nrec = 0) {
return global.create(std::forward<Name>(name), narr, nrec);
}
template <typename Name, typename Key, typename Value, typename... Args>
table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return global.create(std::forward<Name>(name), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename Name, typename... Args>
table create_named_table(Name&& name, Args&&... args) {
table x = global.create_with(std::forward<Args>(args)...);
global.set(std::forward<Name>(name), x);
return x;
}
table create_table(int narr = 0, int nrec = 0) {
return create_table(lua_state(), narr, nrec);
}
template <typename Key, typename Value, typename... Args>
table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return create_table(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename... Args>
table create_table_with(Args&&... args) {
return create_table_with(lua_state(), std::forward<Args>(args)...);
}
static inline table create_table(lua_State* L, int narr = 0, int nrec = 0) {
return global_table::create(L, narr, nrec);
}
template <typename Key, typename Value, typename... Args>
static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return global_table::create(L, narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename... Args>
static inline table create_table_with(lua_State* L, Args&&... args) {
return global_table::create_with(L, std::forward<Args>(args)...);
}
};
} // namespace sol
// end of sol/state_view.hpp
// beginning of sol/thread.hpp
namespace sol {
struct lua_thread_state {
lua_State* L;
lua_thread_state(lua_State* Ls)
: L(Ls) {
}
lua_State* lua_state() const noexcept {
return L;
}
operator lua_State*() const noexcept {
return lua_state();
}
lua_State* operator->() const noexcept {
return lua_state();
}
};
namespace stack {
template <>
struct unqualified_pusher<lua_thread_state> {
int push(lua_State*, lua_thread_state lts) {
lua_pushthread(lts.L);
return 1;
}
};
template <>
struct unqualified_getter<lua_thread_state> {
lua_thread_state get(lua_State* L, int index, record& tracking) {
tracking.use(1);
lua_thread_state lts( lua_tothread(L, index) );
return lts;
}
};
template <>
struct unqualified_check_getter<lua_thread_state> {
template <typename Handler>
optional<lua_thread_state> get(lua_State* L, int index, Handler&& handler, record& tracking) {
lua_thread_state lts( lua_tothread(L, index) );
if (lts.lua_state() == nullptr) {
handler(L, index, type::thread, type_of(L, index), "value is not a valid thread type");
return nullopt;
}
tracking.use(1);
return lts;
}
};
} // namespace stack
template <typename ref_t>
class basic_thread : public basic_object<ref_t> {
private:
using base_t = basic_object<ref_t>;
public:
using base_t::lua_state;
basic_thread() noexcept = default;
basic_thread(const basic_thread&) = default;
basic_thread(basic_thread&&) = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_thread>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_thread(T&& r)
: base_t(std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
}
basic_thread(const stack_reference& r)
: basic_thread(r.lua_state(), r.stack_index()){};
basic_thread(stack_reference&& r)
: basic_thread(r.lua_state(), r.stack_index()){};
basic_thread& operator=(const basic_thread&) = default;
basic_thread& operator=(basic_thread&&) = default;
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_thread(lua_State* L, T&& r)
: base_t(L, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
}
basic_thread(lua_State* L, int index = -1)
: base_t(L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler{};
stack::check<basic_thread>(L, index, handler);
#endif // Safety
}
basic_thread(lua_State* L, ref_index index)
: base_t(L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
}
basic_thread(lua_State* L, lua_State* actualthread)
: basic_thread(L, lua_thread_state{ actualthread }) {
}
basic_thread(lua_State* L, this_state actualthread)
: basic_thread(L, lua_thread_state{ actualthread.L }) {
}
basic_thread(lua_State* L, lua_thread_state actualthread)
: base_t(L, -stack::push(L, actualthread)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler{};
stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
if (!is_stack_based<base_t>::value) {
lua_pop(lua_state(), 1);
}
}
state_view state() const {
return state_view(this->thread_state());
}
bool is_main_thread() const {
return stack::is_main_thread(this->thread_state());
}
lua_State* thread_state() const {
auto pp = stack::push_pop(*this);
lua_State* lthread = lua_tothread(lua_state(), -1);
return lthread;
}
thread_status status() const {
lua_State* lthread = thread_state();
auto lstat = static_cast<thread_status>(lua_status(lthread));
if (lstat == thread_status::ok) {
lua_Debug ar;
if (lua_getstack(lthread, 0, &ar) > 0)
return thread_status::ok;
else if (lua_gettop(lthread) == 0)
return thread_status::dead;
else
return thread_status::yielded;
}
return lstat;
}
basic_thread create() {
return create(lua_state());
}
static basic_thread create(lua_State* L) {
lua_newthread(L);
basic_thread result(L);
if (!is_stack_based<base_t>::value) {
lua_pop(L, 1);
}
return result;
}
};
typedef basic_thread<reference> thread;
typedef basic_thread<stack_reference> stack_thread;
} // namespace sol
// end of sol/thread.hpp
namespace sol {
class state : private std::unique_ptr<lua_State, detail::state_deleter>, public state_view {
private:
typedef std::unique_ptr<lua_State, detail::state_deleter> unique_base;
public:
state(lua_CFunction panic = default_at_panic)
: unique_base(luaL_newstate()), state_view(unique_base::get()) {
set_default_state(unique_base::get(), panic);
}
state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr)
: unique_base(lua_newstate(alfunc, alpointer)), state_view(unique_base::get()) {
set_default_state(unique_base::get(), panic);
}
state(const state&) = delete;
state(state&&) = default;
state& operator=(const state&) = delete;
state& operator=(state&& that) {
state_view::operator=(std::move(that));
unique_base::operator=(std::move(that));
return *this;
}
using state_view::get;
~state() {
}
};
} // namespace sol
// end of sol/state.hpp
// beginning of sol/coroutine.hpp
namespace sol {
template <typename ref_t>
class basic_coroutine : public basic_object<ref_t> {
private:
using base_t = basic_object<ref_t>;
public:
typedef reference handler_t;
handler_t error_handler;
private:
call_status stats = call_status::yielded;
void luacall(std::ptrdiff_t argcount, std::ptrdiff_t) {
#if SOL_LUA_VESION_I_ >= 504
int nresults;
stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount), &nresults));
#else
stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount)));
#endif
}
template <std::size_t... I, typename... Ret>
auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) {
luacall(n, sizeof...(Ret));
return stack::pop<std::tuple<Ret...>>(lua_state());
}
template <std::size_t I, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) {
luacall(n, 1);
return stack::pop<Ret>(lua_state());
}
template <std::size_t I>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) {
luacall(n, 0);
}
protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) {
int firstreturn = 1;
luacall(n, LUA_MULTRET);
int poststacksize = lua_gettop(this->lua_state());
int returncount = poststacksize - (firstreturn - 1);
if (error()) {
if (error_handler.valid()) {
string_view err = stack::get<string_view>(this->lua_state(), poststacksize);
error_handler.push();
stack::push(this->lua_state(), err);
lua_call(lua_state(), 1, 1);
}
return protected_function_result(this->lua_state(), lua_absindex(this->lua_state(), -1), 1, returncount, status());
}
return protected_function_result(this->lua_state(), firstreturn, returncount, returncount, status());
}
public:
using base_t::lua_state;
basic_coroutine() = default;
template <typename T,
meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_coroutine>>,
meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>,
meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_coroutine(T&& r) noexcept
: base_t(std::forward<T>(r)), error_handler(detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
if (!is_function<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler {};
stack::check<basic_coroutine>(lua_state(), -1, handler);
}
#endif // Safety
}
basic_coroutine(const basic_coroutine&) = default;
basic_coroutine& operator=(const basic_coroutine&) = default;
basic_coroutine(basic_coroutine&&) = default;
basic_coroutine& operator=(basic_coroutine&&) = default;
basic_coroutine(const basic_function<base_t>& b)
: basic_coroutine(b, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) {
}
basic_coroutine(basic_function<base_t>&& b)
: basic_coroutine(std::move(b), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) {
}
basic_coroutine(const basic_function<base_t>& b, handler_t eh) : base_t(b), error_handler(std::move(eh)) {
}
basic_coroutine(basic_function<base_t>&& b, handler_t eh) : base_t(std::move(b)), error_handler(std::move(eh)) {
}
basic_coroutine(const stack_reference& r)
: basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
}
basic_coroutine(stack_reference&& r)
: basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
}
basic_coroutine(const stack_reference& r, handler_t eh) : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) {
}
basic_coroutine(stack_reference&& r, handler_t eh) : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) {
}
template <typename Super>
basic_coroutine(const proxy_base<Super>& p)
: basic_coroutine(p, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) {
}
template <typename Super>
basic_coroutine(proxy_base<Super>&& p)
: basic_coroutine(std::move(p), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) {
}
template <typename Proxy, typename Handler,
meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler>
basic_coroutine(Proxy&& p, Handler&& eh) : basic_coroutine(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_coroutine(lua_State* L, T&& r)
: basic_coroutine(L, std::forward<T>(r), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_coroutine(lua_State* L, T&& r, handler_t eh) : base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler {};
stack::check<basic_coroutine>(lua_state(), -1, handler);
#endif // Safety
}
basic_coroutine(lua_nil_t n) : base_t(n), error_handler(n) {
}
basic_coroutine(lua_State* L, int index = -1)
: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
}
basic_coroutine(lua_State* L, int index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) {
#ifdef SOL_SAFE_REFERENCES
constructor_handler handler {};
stack::check<basic_coroutine>(L, index, handler);
#endif // Safety
}
basic_coroutine(lua_State* L, absolute_index index)
: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
}
basic_coroutine(lua_State* L, absolute_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler {};
stack::check<basic_coroutine>(L, index, handler);
#endif // Safety
}
basic_coroutine(lua_State* L, raw_index index)
: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
}
basic_coroutine(lua_State* L, raw_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler {};
stack::check<basic_coroutine>(L, index, handler);
#endif // Safety
}
basic_coroutine(lua_State* L, ref_index index)
: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
}
basic_coroutine(lua_State* L, ref_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler {};
stack::check<basic_coroutine>(lua_state(), -1, handler);
#endif // Safety
}
call_status status() const noexcept {
return stats;
}
bool error() const noexcept {
call_status cs = status();
return cs != call_status::ok && cs != call_status::yielded;
}
bool runnable() const noexcept {
return base_t::valid() && (status() == call_status::yielded);
}
explicit operator bool() const noexcept {
return runnable();
}
template <typename... Args>
protected_function_result operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) operator()(types<Ret...>, Args&&... args) {
return call<Ret...>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
// some users screw up coroutine.create
// and try to use it with sol::coroutine without ever calling the first resume in Lua
// this makes the stack incompatible with other kinds of stacks: protect against this
// make sure coroutines don't screw us over
base_t::push();
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
}
};
} // namespace sol
// end of sol/coroutine.hpp
// beginning of sol/userdata.hpp
namespace sol {
template <typename base_type>
class basic_userdata : public basic_table<base_type> {
private:
using base_t = basic_table<base_type>;
public:
using base_t::lua_state;
basic_userdata() noexcept = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_userdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_userdata(T&& r) noexcept
: base_t(std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
if (!is_userdata<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
type_assert(lua_state(), -1, type::userdata);
}
#endif // Safety
}
basic_userdata(const basic_userdata&) = default;
basic_userdata(basic_userdata&&) = default;
basic_userdata& operator=(const basic_userdata&) = default;
basic_userdata& operator=(basic_userdata&&) = default;
basic_userdata(const stack_reference& r)
: basic_userdata(r.lua_state(), r.stack_index()) {
}
basic_userdata(stack_reference&& r)
: basic_userdata(r.lua_state(), r.stack_index()) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_userdata(lua_State* L, T&& r)
: base_t(L, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_userdata>(L, -1, handler);
#endif // Safety
}
basic_userdata(lua_State* L, int index = -1)
: base_t(detail::no_safety, L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler{};
stack::check<basic_userdata>(L, index, handler);
#endif // Safety
}
basic_userdata(lua_State* L, ref_index index)
: base_t(detail::no_safety, L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_userdata>(L, -1, handler);
#endif // Safety
}
};
template <typename base_type>
class basic_lightuserdata : public basic_object_base<base_type> {
typedef basic_object_base<base_type> base_t;
public:
using base_t::lua_state;
basic_lightuserdata() noexcept = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_lightuserdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_lightuserdata(T&& r) noexcept
: base_t(std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
if (!is_lightuserdata<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
type_assert(lua_state(), -1, type::lightuserdata);
}
#endif // Safety
}
basic_lightuserdata(const basic_lightuserdata&) = default;
basic_lightuserdata(basic_lightuserdata&&) = default;
basic_lightuserdata& operator=(const basic_lightuserdata&) = default;
basic_lightuserdata& operator=(basic_lightuserdata&&) = default;
basic_lightuserdata(const stack_reference& r)
: basic_lightuserdata(r.lua_state(), r.stack_index()) {
}
basic_lightuserdata(stack_reference&& r)
: basic_lightuserdata(r.lua_state(), r.stack_index()) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_lightuserdata(lua_State* L, T&& r)
: basic_lightuserdata(L, std::forward<T>(r)) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_lightuserdata>(lua_state(), -1, handler);
#endif // Safety
}
basic_lightuserdata(lua_State* L, int index = -1)
: base_t(L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
constructor_handler handler{};
stack::check<basic_lightuserdata>(L, index, handler);
#endif // Safety
}
basic_lightuserdata(lua_State* L, ref_index index)
: base_t(L, index) {
#if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_lightuserdata>(lua_state(), index, handler);
#endif // Safety
}
};
} // namespace sol
// end of sol/userdata.hpp
// beginning of sol/as_args.hpp
namespace sol {
template <typename T>
struct as_args_t {
T src;
};
template <typename Source>
auto as_args(Source&& source) {
return as_args_t<Source> { std::forward<Source>(source) };
}
namespace stack {
template <typename T>
struct unqualified_pusher<as_args_t<T>> {
int push(lua_State* L, const as_args_t<T>& e) {
int p = 0;
for (const auto& i : e.src) {
p += stack::push(L, i);
}
return p;
}
};
} // namespace stack
} // namespace sol
// end of sol/as_args.hpp
// beginning of sol/variadic_args.hpp
#include <limits>
#include <iterator>
namespace sol {
struct variadic_args {
private:
lua_State* L;
int index;
int stacktop;
public:
typedef stack_proxy reference_type;
typedef stack_proxy value_type;
typedef stack_proxy* pointer;
typedef std::ptrdiff_t difference_type;
typedef std::size_t size_type;
typedef stack_iterator<stack_proxy, false> iterator;
typedef stack_iterator<stack_proxy, true> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
variadic_args() = default;
variadic_args(lua_State* luastate, int stackindex = -1)
: L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lua_gettop(luastate)) {
}
variadic_args(lua_State* luastate, int stackindex, int lastindex)
: L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lastindex) {
}
variadic_args(const variadic_args&) = default;
variadic_args& operator=(const variadic_args&) = default;
variadic_args(variadic_args&& o)
: L(o.L), index(o.index), stacktop(o.stacktop) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.L = nullptr;
o.index = 0;
o.stacktop = 0;
}
variadic_args& operator=(variadic_args&& o) {
L = o.L;
index = o.index;
stacktop = o.stacktop;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.L = nullptr;
o.index = 0;
o.stacktop = 0;
return *this;
}
iterator begin() {
return iterator(L, index, stacktop + 1);
}
iterator end() {
return iterator(L, stacktop + 1, stacktop + 1);
}
const_iterator begin() const {
return const_iterator(L, index, stacktop + 1);
}
const_iterator end() const {
return const_iterator(L, stacktop + 1, stacktop + 1);
}
const_iterator cbegin() const {
return begin();
}
const_iterator cend() const {
return end();
}
reverse_iterator rbegin() {
return std::reverse_iterator<iterator>(begin());
}
reverse_iterator rend() {
return std::reverse_iterator<iterator>(end());
}
const_reverse_iterator rbegin() const {
return std::reverse_iterator<const_iterator>(begin());
}
const_reverse_iterator rend() const {
return std::reverse_iterator<const_iterator>(end());
}
const_reverse_iterator crbegin() const {
return std::reverse_iterator<const_iterator>(cbegin());
}
const_reverse_iterator crend() const {
return std::reverse_iterator<const_iterator>(cend());
}
int push() const {
return push(L);
}
int push(lua_State* target) const {
int pushcount = 0;
for (int i = index; i <= stacktop; ++i) {
lua_pushvalue(L, i);
pushcount += 1;
}
if (target != L) {
lua_xmove(L, target, pushcount);
}
return pushcount;
}
template <typename T>
decltype(auto) get(difference_type index_offset = 0) const {
return stack::get<T>(L, index + static_cast<int>(index_offset));
}
type get_type(difference_type index_offset = 0) const noexcept {
return type_of(L, index + static_cast<int>(index_offset));
}
stack_proxy operator[](difference_type index_offset) const {
return stack_proxy(L, index + static_cast<int>(index_offset));
}
lua_State* lua_state() const {
return L;
};
int stack_index() const {
return index;
};
int leftover_count() const {
return stacktop - (index - 1);
}
std::size_t size() const {
return static_cast<std::size_t>(leftover_count());
}
int top() const {
return stacktop;
}
};
namespace stack {
template <>
struct unqualified_getter<variadic_args> {
static variadic_args get(lua_State* L, int index, record& tracking) {
tracking.last = 0;
return variadic_args(L, index);
}
};
template <>
struct unqualified_pusher<variadic_args> {
static int push(lua_State* L, const variadic_args& ref) {
return ref.push(L);
}
};
} // namespace stack
} // namespace sol
// end of sol/variadic_args.hpp
// beginning of sol/variadic_results.hpp
// beginning of sol/as_returns.hpp
namespace sol {
template <typename T>
struct as_returns_t {
T src;
};
template <typename Source>
auto as_returns(Source&& source) {
return as_returns_t<std::decay_t<Source>>{ std::forward<Source>(source) };
}
namespace stack {
template <typename T>
struct unqualified_pusher<as_returns_t<T>> {
int push(lua_State* L, const as_returns_t<T>& e) {
auto& src = detail::unwrap(e.src);
int p = 0;
for (const auto& i : src) {
p += stack::push(L, i);
}
return p;
}
};
} // namespace stack
} // namespace sol
// end of sol/as_returns.hpp
#include <vector>
namespace sol {
template <typename Al = typename std::allocator<object>>
struct basic_variadic_results : public std::vector<object, Al> {
private:
using base_t = std::vector<object, Al>;
public:
basic_variadic_results() : base_t() {
}
basic_variadic_results(unsafe_function_result fr) : base_t() {
this->reserve(fr.return_count());
this->insert(this->cend(), fr.begin(), fr.end());
}
basic_variadic_results(protected_function_result fr) : base_t() {
this->reserve(fr.return_count());
this->insert(this->cend(), fr.begin(), fr.end());
}
template <typename Arg0, typename... Args,
meta::disable_any<std::is_same<meta::unqualified_t<Arg0>, basic_variadic_results>, std::is_same<meta::unqualified_t<Arg0>, function_result>,
std::is_same<meta::unqualified_t<Arg0>, protected_function_result>> = meta::enabler>
basic_variadic_results(Arg0&& arg0, Args&&... args) : base_t(std::forward<Arg0>(arg0), std::forward<Args>(args)...) {
}
basic_variadic_results(const basic_variadic_results&) = default;
basic_variadic_results(basic_variadic_results&&) = default;
};
struct variadic_results : public basic_variadic_results<> {
private:
using base_t = basic_variadic_results<>;
public:
using base_t::base_t;
};
template <typename Al>
struct is_container<basic_variadic_results<Al>> : std::false_type { };
template <>
struct is_container<variadic_results> : std::false_type { };
namespace stack {
template <typename Al>
struct unqualified_pusher<basic_variadic_results<Al>> {
int push(lua_State* L, const basic_variadic_results<Al>& e) {
int p = 0;
for (const auto& i : e) {
p += stack::push(L, i);
}
return p;
}
};
template <>
struct unqualified_pusher<variadic_results> {
int push(lua_State* L, const variadic_results& r) {
using base_t = basic_variadic_results<>;
return stack::push(L, static_cast<const base_t&>(r));
}
};
} // namespace stack
} // namespace sol
// end of sol/variadic_results.hpp
#if SOL_IS_ON(SOL_COMPILER_GCC_I_)
#pragma GCC diagnostic pop
#elif SOL_IS_ON(SOL_COMPILER_VCXX_I_)
#pragma warning(pop)
#endif // g++
#if SOL_IS_ON(SOL_INSIDE_UNREAL_ENGINE_I_)
#undef check
#pragma pop_macro("check")
#endif // Unreal Engine 4 Bullshit
#endif // SOL_HPP
// end of sol/sol.hpp
#endif // SOL_SINGLE_INCLUDE_HPP