DONT KNOW :D

This commit is contained in:
Maurice Grönwoldt 2021-12-30 18:06:04 +01:00
parent 4152ee0413
commit 8505032307
44 changed files with 1360 additions and 275 deletions

2
.gitignore vendored
View file

@ -1,4 +1,6 @@
.cache/
/build/
/build-debug/
/helper/
/cmake-build-debug/
.idea/

View file

@ -2,12 +2,13 @@ cmake_minimum_required(VERSION 3.17)
project(VulcanoLE)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -DDEBUG")
set(CMAKE_EXPORT_COMPILE_COMMANDS TRUE)
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
find_package(Threads REQUIRED)
find_package(udev REQUIRED)
find_package(HIDAPI REQUIRED)
pkg_check_modules(LIBUSB REQUIRED libusb-1.0)
find_package(Threads REQUIRED)
find_package(JACK REQUIRED)
@ -27,14 +28,21 @@ set(SOURCE_FILES
src/VulcanoLE/Scripts/RainbowLine.cpp
src/VulcanoLE/Scripts/Random.cpp
src/VulcanoLE/Scripts/RainbowMap.cpp
src/VulcanoLE/Scripts/Spectral.cpp
src/VulcanoLE/Scripts/BassHistory.cpp
src/VulcanoLE/Scripts/TheUnknown.cpp
src/VulcanoLE/Scripts/Strobo.cpp
src/VulcanoLE/Audio/Filter.cpp
)
set(UTILS_FILES
src/VUtils/Logging.cpp
src/VUtils/FileHandler.cpp
src/VUtils/Pool.cpp
src/VUtils/Environment.cpp
src/VUtils/Random.cpp
src/VUtils/StringUtils.cpp
src/VUtils/Math.cpp
src/VUtils/SimplexNoise.cpp
)
include_directories(${CMAKE_SOURCE_DIR}/headers/)
add_executable(

View file

@ -118,7 +118,7 @@ find_path(HIDAPI_INCLUDE_DIR
${PC_HIDAPI_HIDRAW_INCLUDE_DIRS}
${PC_HIDAPI_LIBUSB_INCLUDE_DIRS})
find_package(Threads QUIET)
find_package(Threads REQUIRED)
###
# Compute the "I don't care which backend" library

View file

@ -1,19 +1,49 @@
# Copyright (c) 2015 Andrew Kelley
# This file is MIT licensed.
# See http://opensource.org/licenses/MIT
# JACK_FOUND
# JACK_INCLUDE_DIR
# JACK_LIBRARY
find_path(JACK_INCLUDE_DIR NAMES jack/jack.h)
find_library(JACK_LIBRARY NAMES jack)
include(CheckLibraryExists)
check_library_exists(jack "jack_set_port_rename_callback" "${JACK_LIBRARY}" HAVE_jack_set_port_rename_callback)
# Try to find JACK
# This will define the following variables:
#
# JACK_FOUND - Whether Jack was found.
# JACK_INCLUDE_DIRS - Jack include directories.
# JACK_LIBRARIES - Jack libraries.
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(JACK DEFAULT_MSG JACK_LIBRARY JACK_INCLUDE_DIR HAVE_jack_set_port_rename_callback)
mark_as_advanced(JACK_INCLUDE_DIR JACK_LIBRARY)
if(JACK_LIBRARIES AND JACK_INCLUDE_DIRS)
# in cache already
set(JACK_FOUND TRUE)
else()
find_package(PkgConfig)
if(PKG_CONFIG_FOUND)
pkg_check_modules(_JACK jack)
endif(PKG_CONFIG_FOUND)
find_path(JACK_INCLUDE_DIR
NAMES
jack/jack.h
PATHS
${_JACK_INCLUDEDIR}
)
find_library(JACK_LIBRARY
NAMES
jack
PATHS
${_JACK_LIBDIR}
)
set(JACK_INCLUDE_DIRS
${JACK_INCLUDE_DIR}
)
set(JACK_LIBRARIES
${JACK_LIBRARY}
)
find_package_handle_standard_args(JACK DEFAULT_MSG JACK_LIBRARIES JACK_INCLUDE_DIRS)
# show the JACK_INCLUDE_DIRS and JACK_LIBRARIES variables only in the advanced view
mark_as_advanced(JACK_INCLUDE_DIR JACK_LIBRARY JACK_INCLUDE_DIRS JACK_LIBRARIES)
endif()

View file

@ -1,7 +1,7 @@
#pragma once
#include <string>
#include <unordered_map>
#include <map>
namespace VUtils {
class Environment {
@ -20,7 +20,7 @@ namespace VUtils {
void set(const char* name, const char *value);
void setNumber(const char* name, double value);
protected:
std::unordered_map<std::string, std::string> m_env;
std::map<std::string, std::string> m_env;
std::string m_prefix = "VENV_";
std::string m_filename;
};

View file

@ -7,5 +7,6 @@ namespace VUtils {
static double bezierBlend(double t);
static double easeIn(double ratio);
static double map(double x, double in_min, double in_max, double out_min, double out_max);
static double cubicInterpolate (double y0, double y1, double y2, double y3, double factor);
};
}

23
headers/VUtils/Random.h Normal file
View file

@ -0,0 +1,23 @@
#pragma once
#include <random>
namespace VUtils {
class Random {
public:
static Random& the() {
static Random _instance;
return _instance;
}
Random();
static double generate(double min, double max);
double get(double min, double max);
void setDist(double min, double max);
double getFast();
private:
std::random_device m_rd;
std::mt19937 m_mt;
std::uniform_real_distribution<double> m_dist;
};
}

View file

@ -0,0 +1,55 @@
/**
* @file SimplexNoise.h
* @brief A Perlin Simplex Noise C++ Implementation (1D, 2D, 3D).
*
* Copyright (c) 2014-2018 Sebastien Rombauts (sebastien.rombauts@gmail.com)
*
* Distributed under the MIT License (MIT) (See accompanying file LICENSE.txt
* or copy at http://opensource.org/licenses/MIT)
*/
#pragma once
#include <cstddef> // size_t
/**
* @brief A Perlin Simplex Noise C++ Implementation (1D, 2D, 3D, 4D).
*/
class SimplexNoise {
public:
// 1D Perlin simplex noise
static float noise(float x);
// 2D Perlin simplex noise
static float noise(float x, float y);
// 3D Perlin simplex noise
static float noise(float x, float y, float z);
// Fractal/Fractional Brownian Motion (fBm) noise summation
float fractal(size_t octaves, float x) const;
float fractal(size_t octaves, float x, float y) const;
float fractal(size_t octaves, float x, float y, float z) const;
/**
* Constructor of to initialize a fractal noise summation
*
* @param[in] frequency Frequency ("width") of the first octave of noise (default to 1.0)
* @param[in] amplitude Amplitude ("height") of the first octave of noise (default to 1.0)
* @param[in] lacunarity Lacunarity specifies the frequency multiplier between successive octaves (default to 2.0).
* @param[in] persistence Persistence is the loss of amplitude between successive octaves (usually 1/lacunarity)
*/
explicit SimplexNoise(float frequency = 1.0f,
float amplitude = 1.0f,
float lacunarity = 2.0f,
float persistence = 0.5f) :
mFrequency(frequency),
mAmplitude(amplitude),
mLacunarity(lacunarity),
mPersistence(persistence) {
}
private:
// Parameters of Fractional Brownian Motion (fBm) : sum of N "octaves" of noise
float mFrequency; ///< Frequency ("width") of the first octave of noise (default to 1.0)
float mAmplitude; ///< Amplitude ("height") of the first octave of noise (default to 1.0)
float mLacunarity; ///< Lacunarity specifies the frequency multiplier between successive octaves (default to 2.0).
float mPersistence; ///< Persistence is the loss of amplitude between successive octaves (usually 1/lacunarity)
};

View file

@ -7,6 +7,7 @@
#include <VUtils/Environment.h>
#include <VulcanoLE/Audio/FFT.h>
#include <VulcanoLE/Audio/Types.h>
#include <VulcanoLE/Audio/Filter.h>
class AudioGrabber {
public:
@ -14,19 +15,22 @@ public:
FFT = 0,
RMS = 1,
PEAK = 2,
ALL = 3
FILTER = 3,
ALL = 4
};
AudioGrabber();
~AudioGrabber();
bool read(stereoSample *buffer, uint32_t bufferSize);
static AudioGrabber* createAudioGrabber();
void init();
Audio::FilterHelper& getFilter();
FFT fft;
ReqMode requestMode = ReqMode::FFT;
stereoSampleFrame loudness = {0.0, 0.0};
stereoSampleFrame getLoudness();
bool work();
VUtils::Environment *env = nullptr;
double getBass();
private:
std::mutex m_mtx;
stereoSample *m_buffer{};
@ -34,4 +38,5 @@ private:
void calculatePEAK(stereoSample *pFrame);
double m_scale = 1.0;
int availableData = 0;
Audio::FilterHelper m_filter;
};

View file

@ -12,6 +12,7 @@ public:
outputSample *getData();
bool prepareInput(stereoSample *buffer, uint32_t sampleSize, double scale);
double hannWindow[BUFFER_SIZE]{};
int size = BUFFER_SIZE;
protected:
fftw_complex *m_fftwInputLeft{};
fftw_complex *m_fftwInputRight{};
@ -25,4 +26,5 @@ protected:
static double valueToAmp(double value);
double times;
static double limit;
};

View file

@ -0,0 +1,30 @@
#include "Types.h"
#include <vector>
#define FILTER_LIMIT 0.25
namespace Audio {
class Filter {
public:
Filter();
float process(float input, float cut, float);
protected:
float output = 0.0;
int m_counter = 0;
float m_feedback[4][16]{};
float m_filterOutput[4]{};
};
struct FilterHelper {
Filter filter_right{};
Filter filter_left{};
float cutoff{};
float scale{1.0};
std::vector<stereoSample> output;
stereoSampleFrame work(stereoSample *buffer, int size);
protected:
double m_limit = FILTER_LIMIT;
int overshot_times = 0;
stereoSampleFrame doLimit(double, double);
};
}

View file

@ -1,5 +1,4 @@
#pragma once
#define FFT_SIZE 512
#define BUFFER_SIZE 1024
struct stereoSampleFrame {

View file

@ -2,7 +2,8 @@
#include <VulcanoLE/Colors/Type.h>
namespace Color {
struct Generator {
struct Generator {
static rgba rgbFromRatio(double ratio, int16_t alpha);
};
}
static rgb rgbFromHSV(hsv in);
};
} // namespace Color

View file

@ -3,8 +3,20 @@
#include <cstdint>
typedef struct rgba_type {
int16_t r{};
int16_t g{};
int16_t b{};
int16_t a = 255;
int16_t r = 0;
int16_t g = 0;
int16_t b = 0;
int16_t a = 0;
} rgba;
typedef struct {
double r; // a fraction between 0 and 1
double g; // a fraction between 0 and 1
double b; // a fraction between 0 and 1
} rgb;
typedef struct {
double h; // angle in degrees
double s; // a fraction between 0 and 1
double v; // a fraction between 0 and 1
} hsv;

View file

@ -20,13 +20,12 @@ class Vulcan121 {
public:
explicit Vulcan121(HIDHelper *helper);
~Vulcan121();
int sendLedMap(led_map *src, bool deleteMap = false);
int sendLedMap(led_map& src);
int sendToLEDs(rgba rgb);
bool sendInitSequence();
bool queryCtrlReport(unsigned char id);
bool sendCtrlReport(unsigned char id);
bool waitForCtrlDev();
static led_map *createEmptyLEDMap();
struct DATA {
int num_rows = NUM_ROWS;
int num_cols = NUM_COLS;
@ -39,8 +38,10 @@ public:
int getIndex(int row, int col);
// PLEASE MAKE SURE YOU KNOW THE LIMITS!
int getIndexNoCheck(int row, int col);
static void fadeOutMap(led_map* map, double factor);
void fadeOutMapColumn(led_map* map, double factor);
static void fadeOutMap(led_map& map, double factor);
static void setColor(led_map& map, rgba color);
static void setColorNoBrightness(led_map& map, rgba color);
void fadeOutMapColumn(led_map& map, double factor);
protected:
void setupMap();
// we need some mapping feature! rows and cols dont have the same amount of keys. so the struct needs

View file

@ -0,0 +1,20 @@
#pragma once
#include <VulcanoLE/Visual/VIZ.h>
#include <VulcanoLE/Audio/AudioGrabber.h>
#include <queue>
namespace VIZ {
struct BassHistory : public VIZ {
BassHistory(AudioGrabber *pGrabber, Vulcan121 *pVulcan121);
~BassHistory() override = default;
void onSetup() override;
void onTick(float delta) override;
const char *name() override;
std::string m_name = "Bass History";
led_map map{};
std::vector<double> m_history;
void pushNew(double val);
};
}

View file

@ -13,8 +13,11 @@ namespace VIZ {
void onTick(float delta) override;
void setForChannel(float value, int channel);
void drawFrame(int toRow);
void drawSetup(float val);
const char *name() override;
std::string m_name = "Loudness Meter";
bool isSetup = true;
double frameWidth = 0;
protected:
rgba colours[3] = {
{ 0, 0, 255, 80 },
@ -22,7 +25,7 @@ namespace VIZ {
{ 255, 0, 0, 40 }
};
double tailFactor = 0;
led_map *data = Vulcan121::createEmptyLEDMap();
led_map data{};
};
}

View file

@ -5,13 +5,13 @@
namespace VIZ {
class RainbowLine : public VIZ {
int currentColumn = 0;
double deltaNeeded = 100000.0;
double deltaNeeded = 0.0;
double deltaElapsed = 0;
rgba *colours = nullptr;
int maxCols = 0;
double lastValue = 0;
double decayValue = 0;
double tailFactor = 0.3;
double tailFactor = 0.5;
public:
RainbowLine(AudioGrabber *pGrabber, Vulcan121 *vulcan);
~RainbowLine() override;
@ -20,7 +20,7 @@ namespace VIZ {
void calcNextDelta(double ratio);
const char *name() override;
std::string m_name = "Rainbow Line";
led_map *data = Vulcan121::createEmptyLEDMap();
led_map data{};
bool firstUnder = true;
double deltaMove(double val);
void moveLine(double val, double d);

View file

@ -19,7 +19,7 @@ namespace VIZ {
void calcNextDelta(double ratio);
const char *name() override;
std::string m_name = "Rainbow Map";
led_map *data = Vulcan121::createEmptyLEDMap();
led_map data{};
bool firstUnder = true;
double deltaMove(double val);
void moveRainbow(double d);

View file

@ -4,23 +4,18 @@
#include <VulcanoLE/Keyboards/Vulcan121.h>
#include <VulcanoLE/Visual/VIZ.h>
#include <vector>
#include "VUtils/Random.h"
namespace VIZ {
class Random : public VIZ {
protected:
led_map *map = nullptr;
bool isReverse{ false };
bool emptyTicks{ false };
led_map map{};
VUtils::Random m_random;
double m_angle{0.0};
public:
Random(AudioGrabber *pGrabber, Vulcan121 *vulcan);
~Random() override;
void onSetup() override;
void onTick(float delta) override;
const char *name() override;
float deltaElapsed;
float deltaNeeded{ 80000 };
int row;
int columnCount{0}; // for last selected row all previous draw full
int ticks;
};
}

View file

@ -0,0 +1,18 @@
#pragma once
#include <VulcanoLE/Visual/VIZ.h>
#include <VulcanoLE/Audio/AudioGrabber.h>
#include <vector>
namespace VIZ {
struct Spectral : public VIZ {
Spectral(AudioGrabber *pGrabber, Vulcan121 *pVulcan121);
~Spectral() override = default;
void onSetup() override;
void onTick(float delta) override;
const char *name() override;
std::string m_name = "SpectralO";
led_map map{};
};
}

View file

@ -1,22 +1,20 @@
#pragma once
#include <VulcanoLE/Visual/VIZ.h>
#include <VulcanoLE/Audio/AudioGrabber.h>
#include <VulcanoLE/Visual/VIZ.h>
namespace VIZ {
struct Spectrum : public VIZ {
struct Spectrum : public VIZ {
public:
static constexpr int maxColors = 3;
Spectrum(AudioGrabber *pGrabber, Vulcan121 *pVulcan121);
~Spectrum() override = default;
void onSetup() override;
void onTick(float delta) override;
double lastVal = 0;
const char *name() override;
std::string m_name = "Spectrum One";
rgba colors[3] = {
{ 0, 10, 180, 0 },
{ 0, 180, 0, 0 },
{ 150, 0, 0, 0 }
};
};
}
protected:
std::string m_name = "Spectrum One";
double m_angle = 0.0;
};
} // namespace VIZ

View file

@ -0,0 +1,21 @@
#pragma once
#include <VulcanoLE/Audio/AudioGrabber.h>
#include <VulcanoLE/Visual/VIZ.h>
namespace VIZ {
struct Strobo : public VIZ {
public:
Strobo(AudioGrabber *pGrabber, Vulcan121 *pVulcan121);
~Strobo() override = default;
void onSetup() override;
void onTick(float delta) override;
const char *name() override;
protected:
std::string m_name = "Strobo";
double m_sinPoint;
bool m_isStanding;
rgba m_color{};
};
} // namespace VIZ

View file

@ -0,0 +1,24 @@
#pragma once
#include <VulcanoLE/Audio/AudioGrabber.h>
#include <VulcanoLE/Keyboards/Vulcan121.h>
#include <VulcanoLE/Visual/VIZ.h>
#include <vector>
#include "VUtils/Random.h"
namespace VIZ {
class TheUnknown : public VIZ {
protected:
VUtils::Random m_random{};
led_map map{};
public:
TheUnknown(AudioGrabber *pGrabber, Vulcan121 *vulcan);
void onSetup() override;
void onTick(float delta) override;
const char *name() override;
double m_keyOffset[NUM_KEYS]{};
double m_keyHeightMap[NUM_KEYS]{};
double m_angle = 0.0001;
};
}

View file

@ -3,7 +3,7 @@
#include <vector>
#include <VulcanoLE/Scripts/Spectrum.h>
#define VIZSIZE 6
#define VIZSIZE 10
using micro = std::chrono::duration<double, std::micro>;
using ms = std::chrono::duration<double, std::milli>;

View file

@ -37,7 +37,7 @@ int main(int argc, char **argv) {
if (helper.openDevices() < 0) {
ERR("Unable to find Keyboard!")
exit(0);
};
}
usleep(10000);
auto runner = VisAudioRunner::create();
runner->env = &config;
@ -46,7 +46,7 @@ int main(int argc, char **argv) {
runner->plugins->setCurrentMode(config.getAsInt("visual_mode", 1));
while (shouldRun) {
int mode;
LOGWN("Enter Visual Mode: %d-%d < 0 = EXIT:\t", 1, VIZSIZE)
LOGWN("Enter Visual Mode: %d-%d < 0 = EXIT: \n> ", 1, VIZSIZE)
std::cin >> mode;
if (std::cin.fail()) {
ERR("ERROR -- You did not enter an integer")

View file

@ -17,4 +17,16 @@ namespace VUtils {
double Math::map(double x, double in_min, double in_max, double out_min, double out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
double Math::cubicInterpolate (double y0, double y1, double y2, double y3, double factor)
{
double a0, a1, a2, a3, mu2;
mu2 = factor * factor;
a0 = y3 - y2 - y0 + y1;
a1 = y0 - y1 - a0;
a2 = y2 - y0;
a3 = y1;
return (a0 * factor * mu2 + a1 * mu2 + a2 * factor + a3);
}
}

21
src/VUtils/Random.cpp Normal file
View file

@ -0,0 +1,21 @@
#include <VUtils/Random.h>
namespace VUtils {
Random::Random() : m_mt{ m_rd() } {
}
double Random::generate(double min, double max) {
return Random::the().get(min, max);
}
double Random::get(double min, double max) {
std::uniform_real_distribution<double> dist(min, max);
return dist(m_mt);
}
void Random::setDist(double min, double max) {
m_dist = std::uniform_real_distribution(min, max);
}
double Random::getFast() {
return m_dist(m_mt);
}
}

475
src/VUtils/SimplexNoise.cpp Normal file
View file

@ -0,0 +1,475 @@
/**
* @file SimplexNoise.cpp
* @brief A Perlin Simplex Noise C++ Implementation (1D, 2D, 3D).
*
* Copyright (c) 2014-2018 Sebastien Rombauts (sebastien.rombauts@gmail.com)
*
* This C++ implementation is based on the speed-improved Java version 2012-03-09
* by Stefan Gustavson (original Java source code in the public domain).
* http://webstaff.itn.liu.se/~stegu/simplexnoise/SimplexNoise.java:
* - Based on example code by Stefan Gustavson (stegu@itn.liu.se).
* - Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
* - Better rank ordering method by Stefan Gustavson in 2012.
*
* This implementation is "Simplex Noise" as presented by
* Ken Perlin at a relatively obscure and not often cited course
* session "Real-Time Shading" at Siggraph 2001 (before real
* time shading actually took on), under the title "hardware noise".
* The 3D function is numerically equivalent to his Java reference
* code available in the PDF course notes, although I re-implemented
* it from scratch to get more readable code. The 1D, 2D and 4D cases
* were implemented from scratch by me from Ken Perlin's text.
*
* Distributed under the MIT License (MIT) (See accompanying file LICENSE.txt
* or copy at http://opensource.org/licenses/MIT)
*/
#include <VUtils/SimplexNoise.h>
#include <cstdint> // int32_t/uint8_t
/**
* Computes the largest integer value not greater than the float one
*
* This method is faster than using (int32_t)std::floor(fp).
*
* I measured it to be approximately twice as fast:
* float: ~18.4ns instead of ~39.6ns on an AMD APU),
* double: ~20.6ns instead of ~36.6ns on an AMD APU),
* Reference: http://www.codeproject.com/Tips/700780/Fast-floor-ceiling-functions
*
* @param[in] fp float input value
*
* @return largest integer value not greater than fp
*/
static inline int32_t fastfloor(float fp) {
int32_t i = static_cast<int32_t>(fp);
return (fp < i) ? (i - 1) : (i);
}
/**
* Permutation table. This is just a random jumble of all numbers 0-255.
*
* This produce a repeatable pattern of 256, but Ken Perlin stated
* that it is not a problem for graphic texture as the noise features disappear
* at a distance far enough to be able to see a repeatable pattern of 256.
*
* This needs to be exactly the same for all instances on all platforms,
* so it's easiest to just keep it as static explicit data.
* This also removes the need for any initialisation of this class.
*
* Note that making this an uint32_t[] instead of a uint8_t[] might make the
* code run faster on platforms with a high penalty for unaligned single
* byte addressing. Intel x86 is generally single-byte-friendly, but
* some other CPUs are faster with 4-aligned reads.
* However, a char[] is smaller, which avoids cache trashing, and that
* is probably the most important aspect on most architectures.
* This array is accessed a *lot* by the noise functions.
* A vector-valued noise over 3D accesses it 96 times, and a
* float-valued 4D noise 64 times. We want this to fit in the cache!
*/
static const uint8_t perm[256] = {
151, 160, 137, 91, 90, 15,
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
};
/**
* Helper function to hash an integer using the above permutation table
*
* This inline function costs around 1ns, and is called N+1 times for a noise of N dimension.
*
* Using a real hash function would be better to improve the "repeatability of 256" of the above permutation table,
* but fast integer Hash functions uses more time and have bad random properties.
*
* @param[in] i Integer value to hash
*
* @return 8-bits hashed value
*/
static inline uint8_t hash(int32_t i) {
return perm[static_cast<uint8_t>(i)];
}
/* NOTE Gradient table to test if lookup-table are more efficient than calculs
static const float gradients1D[16] = {
-8.f, -7.f, -6.f, -5.f, -4.f, -3.f, -2.f, -1.f,
1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f
};
*/
/**
* Helper function to compute gradients-dot-residual vectors (1D)
*
* @note that these generate gradients of more than unit length. To make
* a close match with the value range of classic Perlin noise, the final
* noise values need to be rescaled to fit nicely within [-1,1].
* (The simplex noise functions as such also have different scaling.)
* Note also that these noise functions are the most practical and useful
* signed version of Perlin noise.
*
* @param[in] hash hash value
* @param[in] x distance to the corner
*
* @return gradient value
*/
static float grad(int32_t hash, float x) {
const int32_t h = hash & 0x0F; // Convert low 4 bits of hash code
float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient
// float grad = gradients1D[h]; // NOTE : Test of Gradient look-up table instead of the above
return (grad * x); // Multiply the gradient with the distance
}
/**
* Helper functions to compute gradients-dot-residual vectors (2D)
*
* @param[in] hash hash value
* @param[in] x x coord of the distance to the corner
* @param[in] y y coord of the distance to the corner
*
* @return gradient value
*/
static float grad(int32_t hash, float x, float y) {
const int32_t h = hash & 0x3F; // Convert low 3 bits of hash code
const float u = h < 4 ? x : y; // into 8 simple gradient directions,
const float v = h < 4 ? y : x;
return ((h & 1) ? -u : u) + ((h & 2) ? -2.0f * v : 2.0f * v); // and compute the dot product with (x,y).
}
/**
* Helper functions to compute gradients-dot-residual vectors (3D)
*
* @param[in] hash hash value
* @param[in] x x coord of the distance to the corner
* @param[in] y y coord of the distance to the corner
* @param[in] z z coord of the distance to the corner
*
* @return gradient value
*/
static float grad(int32_t hash, float x, float y, float z) {
int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
float u = h < 8 ? x : y; // gradient directions, and compute dot product.
float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15
return ((h & 1) ? -u : u) + ((h & 2) ? -v : v);
}
/**
* 1D Perlin simplex noise
*
* Takes around 74ns on an AMD APU.
*
* @param[in] x float coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
float SimplexNoise::noise(float x) {
float n0, n1; // Noise contributions from the two "corners"
// No need to skew the input space in 1D
// Corners coordinates (nearest integer values):
int32_t i0 = fastfloor(x);
int32_t i1 = i0 + 1;
// Distances to corners (between 0 and 1):
float x0 = x - i0;
float x1 = x0 - 1.0f;
// Calculate the contribution from the first corner
float t0 = 1.0f - x0*x0;
// if(t0 < 0.0f) t0 = 0.0f; // not possible
t0 *= t0;
n0 = t0 * t0 * grad(hash(i0), x0);
// Calculate the contribution from the second corner
float t1 = 1.0f - x1*x1;
// if(t1 < 0.0f) t1 = 0.0f; // not possible
t1 *= t1;
n1 = t1 * t1 * grad(hash(i1), x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 scales to fit exactly within [-1,1]
return 0.395f * (n0 + n1);
}
/**
* 2D Perlin simplex noise
*
* Takes around 150ns on an AMD APU.
*
* @param[in] x float coordinate
* @param[in] y float coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
float SimplexNoise::noise(float x, float y) {
float n0, n1, n2; // Noise contributions from the three corners
// Skewing/Unskewing factors for 2D
static const float F2 = 0.366025403f; // F2 = (sqrt(3) - 1) / 2
static const float G2 = 0.211324865f; // G2 = (3 - sqrt(3)) / 6 = F2 / (1 + 2 * K)
// Skew the input space to determine which simplex cell we're in
const float s = (x + y) * F2; // Hairy factor for 2D
const float xs = x + s;
const float ys = y + s;
const int32_t i = fastfloor(xs);
const int32_t j = fastfloor(ys);
// Unskew the cell origin back to (x,y) space
const float t = static_cast<float>(i + j) * G2;
const float X0 = i - t;
const float Y0 = j - t;
const float x0 = x - X0; // The x,y distances from the cell origin
const float y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int32_t i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
i1 = 1;
j1 = 0;
} else { // upper triangle, YX order: (0,0)->(0,1)->(1,1)
i1 = 0;
j1 = 1;
}
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
const float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
const float y1 = y0 - j1 + G2;
const float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
const float y2 = y0 - 1.0f + 2.0f * G2;
// Work out the hashed gradient indices of the three simplex corners
const int gi0 = hash(i + hash(j));
const int gi1 = hash(i + i1 + hash(j + j1));
const int gi2 = hash(i + 1 + hash(j + 1));
// Calculate the contribution from the first corner
float t0 = 0.5f - x0*x0 - y0*y0;
if (t0 < 0.0f) {
n0 = 0.0f;
} else {
t0 *= t0;
n0 = t0 * t0 * grad(gi0, x0, y0);
}
// Calculate the contribution from the second corner
float t1 = 0.5f - x1*x1 - y1*y1;
if (t1 < 0.0f) {
n1 = 0.0f;
} else {
t1 *= t1;
n1 = t1 * t1 * grad(gi1, x1, y1);
}
// Calculate the contribution from the third corner
float t2 = 0.5f - x2*x2 - y2*y2;
if (t2 < 0.0f) {
n2 = 0.0f;
} else {
t2 *= t2;
n2 = t2 * t2 * grad(gi2, x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 45.23065f * (n0 + n1 + n2);
}
/**
* 3D Perlin simplex noise
*
* @param[in] x float coordinate
* @param[in] y float coordinate
* @param[in] z float coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
float SimplexNoise::noise(float x, float y, float z) {
float n0, n1, n2, n3; // Noise contributions from the four corners
// Skewing/Unskewing factors for 3D
static const float F3 = 1.0f / 3.0f;
static const float G3 = 1.0f / 6.0f;
// Skew the input space to determine which simplex cell we're in
float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D
int i = fastfloor(x + s);
int j = fastfloor(y + s);
int k = fastfloor(z + s);
float t = (i + j + k) * G3;
float X0 = i - t; // Unskew the cell origin back to (x,y,z) space
float Y0 = j - t;
float Z0 = k - t;
float x0 = x - X0; // The x,y,z distances from the cell origin
float y0 = y - Y0;
float z0 = z - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; // X Y Z order
} else if (x0 >= z0) {
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; // X Z Y order
} else {
i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; // Z X Y order
}
} else { // x0<y0
if (y0 < z0) {
i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; // Z Y X order
} else if (x0 < z0) {
i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; // Y Z X order
} else {
i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; // Y X Z order
}
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
float y1 = y0 - j1 + G3;
float z1 = z0 - k1 + G3;
float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords
float y2 = y0 - j2 + 2.0f * G3;
float z2 = z0 - k2 + 2.0f * G3;
float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords
float y3 = y0 - 1.0f + 3.0f * G3;
float z3 = z0 - 1.0f + 3.0f * G3;
// Work out the hashed gradient indices of the four simplex corners
int gi0 = hash(i + hash(j + hash(k)));
int gi1 = hash(i + i1 + hash(j + j1 + hash(k + k1)));
int gi2 = hash(i + i2 + hash(j + j2 + hash(k + k2)));
int gi3 = hash(i + 1 + hash(j + 1 + hash(k + 1)));
// Calculate the contribution from the four corners
float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
if (t0 < 0) {
n0 = 0.0;
} else {
t0 *= t0;
n0 = t0 * t0 * grad(gi0, x0, y0, z0);
}
float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
if (t1 < 0) {
n1 = 0.0;
} else {
t1 *= t1;
n1 = t1 * t1 * grad(gi1, x1, y1, z1);
}
float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
if (t2 < 0) {
n2 = 0.0;
} else {
t2 *= t2;
n2 = t2 * t2 * grad(gi2, x2, y2, z2);
}
float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
if (t3 < 0) {
n3 = 0.0;
} else {
t3 *= t3;
n3 = t3 * t3 * grad(gi3, x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0f*(n0 + n1 + n2 + n3);
}
/**
* Fractal/Fractional Brownian Motion (fBm) summation of 1D Perlin Simplex noise
*
* @param[in] octaves number of fraction of noise to sum
* @param[in] x float coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
float SimplexNoise::fractal(size_t octaves, float x) const {
float output = 0.f;
float denom = 0.f;
float frequency = mFrequency;
float amplitude = mAmplitude;
for (size_t i = 0; i < octaves; i++) {
output += (amplitude * noise(x * frequency));
denom += amplitude;
frequency *= mLacunarity;
amplitude *= mPersistence;
}
return (output / denom);
}
/**
* Fractal/Fractional Brownian Motion (fBm) summation of 2D Perlin Simplex noise
*
* @param[in] octaves number of fraction of noise to sum
* @param[in] x x float coordinate
* @param[in] y y float coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
float SimplexNoise::fractal(size_t octaves, float x, float y) const {
float output = 0.f;
float denom = 0.f;
float frequency = mFrequency;
float amplitude = mAmplitude;
for (size_t i = 0; i < octaves; i++) {
output += (amplitude * noise(x * frequency, y * frequency));
denom += amplitude;
frequency *= mLacunarity;
amplitude *= mPersistence;
}
return (output / denom);
}
/**
* Fractal/Fractional Brownian Motion (fBm) summation of 3D Perlin Simplex noise
*
* @param[in] octaves number of fraction of noise to sum
* @param[in] x x float coordinate
* @param[in] y y float coordinate
* @param[in] z z float coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
float SimplexNoise::fractal(size_t octaves, float x, float y, float z) const {
float output = 0.f;
float denom = 0.f;
float frequency = mFrequency;
float amplitude = mAmplitude;
for (size_t i = 0; i < octaves; i++) {
output += (amplitude * noise(x * frequency, y * frequency, z * frequency));
denom += amplitude;
frequency *= mLacunarity;
amplitude *= mPersistence;
}
return (output / denom);
}

View file

@ -2,6 +2,7 @@
#include <VulcanoLE/Audio/AudioGrabber.h>
#include <VUtils/Logging.h>
#include <VulcanoLE/Audio/JackClient.h>
#include "VUtils/Math.h"
AudioGrabber::AudioGrabber() = default;
@ -27,27 +28,28 @@ void AudioGrabber::init() {
m_buffer = static_cast<stereoSample *>(calloc(BUFFER_SIZE, sizeof(stereoSample)));
if (env != nullptr)
m_scale = env->getAsDouble("audio_scale", 1.0);
m_filter.scale = 1.0;
DBG("SET Audio Scale: %.3f", m_scale)
loudness = { 0.0, 0.0 };
}
void AudioGrabber::calculateRMS(stereoSample *pFrame) {
float squareL = 0, meanL;
float squareR = 0, meanR;
double squareL = 0, meanL;
double squareR = 0, meanR;
for (int i = 0; i < availableData; i++) {
squareL += std::pow(pFrame[0].l * m_scale, 2);
squareR += std::pow(pFrame[0].r * m_scale, 2);
squareL += std::pow(pFrame[i].l * m_scale, 2);
squareR += std::pow(pFrame[i].r * m_scale, 2);
}
meanL = (squareL / (float) (BUFFER_SIZE));
meanR = (squareR / (float) (BUFFER_SIZE));
loudness = { std::sqrt(meanL), std::sqrt(meanR) };
meanL = (squareL / (float) (availableData));
meanR = (squareR / (float) (availableData));
loudness = { (float) std::sqrt(meanL), (float) std::sqrt(meanR) };
}
void AudioGrabber::calculatePEAK(stereoSample *pFrame) {
stereoSampleFrame max = { 0, 0 };
for (int i = 0; i < availableData; i++) {
float left = std::abs(pFrame[0].l * m_scale);
float right = std::abs(pFrame[0].r * m_scale);
auto left = (float) std::abs(pFrame[i].l * m_scale);
auto right = (float) std::abs(pFrame[i].r * m_scale);
if (left > max.l)
max.l = left;
if (right > max.r)
@ -74,6 +76,9 @@ bool AudioGrabber::work() {
case ReqMode::PEAK:
calculatePEAK(m_buffer);
break;
case ReqMode::FILTER:
loudness = m_filter.work(m_buffer, availableData);
break;
default: {
calculateRMS(m_buffer);
calculatePEAK(m_buffer);
@ -85,3 +90,16 @@ bool AudioGrabber::work() {
return false;
}
}
Audio::FilterHelper &AudioGrabber::getFilter() {
return m_filter;
}
double AudioGrabber::getBass() {
auto fftData = fft.getData();
auto val = 0.0;
for (int i = 1; i < 4; ++i) {
auto avg = (fftData->leftChannel[i] + fftData->rightChannel[i]) / 2.0;
if (avg > val)
val = avg;
}
return VUtils::Math::clamp(val, 1, 255);
}

View file

@ -0,0 +1,71 @@
#include <VulcanoLE/Audio/Filter.h>
#include <VulcanoLE/Audio/Types.h>
#include <valarray>
#include <VUtils/Math.h>
#include <VUtils/Logging.h>
namespace Audio {
Filter::Filter() {
for (int i = 0; i < 3; ++i) {
m_filterOutput[i] = 0.0f;
for (int j = 0; j < 16; ++j) {
m_feedback[i][j] = 0.0f;
}
}
}
float Filter::process(float input, float cut, float) {
cut *= cut;
output = input;
if (m_counter >= 8)
m_counter = 0;
for (int i = 0; i < 4; ++i) {
output = output * cut + m_feedback[i][m_counter + 7] * (1.f - cut);
m_feedback[i][m_counter] = output;
m_feedback[i][m_counter + 8] = output;
m_filterOutput[i] = output;
}
m_counter++;
return m_filterOutput[3];
}
stereoSampleFrame FilterHelper::work(stereoSample *buffer, int size) {
output.clear();
output.resize(size);
double peakL = 0;
double peakR = 0;
for (int i = 0; i < size; ++i) {
output[i].r = filter_right.process(buffer[i].r, cutoff, 0);
output[i].l = filter_left.process(buffer[i].l, cutoff, 0);
double l = std::abs(output[i].l);
double r = std::abs(output[i].r);
if (l > peakL) peakL = l;
if (r > peakR) peakR = r;
}
return doLimit(peakL, peakR);
}
stereoSampleFrame FilterHelper::doLimit(double left, double right) {
if (left > m_limit) {
m_limit = left + 0.05;
DBG("Overshot! New Limit: %.2f", m_limit)
}
if (right > m_limit) {
m_limit = right + 0.05;
DBG("Overshot! New Limit: %.2f", m_limit)
}
m_limit = std::clamp(m_limit, 0.0, 1.0);
if (left < 0.00005 && right < 0.00005) {
// reset limit :D
overshot_times++;
if (overshot_times > 10000 && m_limit != FILTER_LIMIT) {
DBG("OVER 10000 SILENCE SIGNALS... RESET TO INITIAL LIMIT")
m_limit = FILTER_LIMIT;
overshot_times = 0;
}
}
return {
(float) VUtils::Math::map(left, 0, m_limit, 0, 255),
(float) VUtils::Math::map(right, 0, m_limit, 0, 255),
};
}
}

View file

@ -1,7 +1,7 @@
#include <VulcanoLE/Colors/ColorHelper.h>
namespace Color {
rgba Generator::rgbFromRatio(double ratio, int16_t alpha = 255) {
rgba Generator::rgbFromRatio(double ratio, int16_t alpha = 255) {
int normalized = int(ratio * 256 * 6);
int x = normalized % 256;
@ -39,6 +39,64 @@ namespace Color {
break;
}
return { red, green, blue, alpha };
}
return {red, green, blue, alpha};
}
rgb Generator::rgbFromHSV(hsv in) {
double hh, p, q, t, ff;
long i;
rgb out;
if (in.s <= 0.0) { // < is bogus, just shuts up warnings
out.r = in.v;
out.g = in.v;
out.b = in.v;
return out;
}
hh = in.h;
if (hh >= 360.0)
hh = 0.0;
hh /= 60.0;
i = (long)hh;
ff = hh - i;
p = in.v * (1.0 - in.s);
q = in.v * (1.0 - (in.s * ff));
t = in.v * (1.0 - (in.s * (1.0 - ff)));
switch (i) {
case 0:
out.r = in.v;
out.g = t;
out.b = p;
break;
case 1:
out.r = q;
out.g = in.v;
out.b = p;
break;
case 2:
out.r = p;
out.g = in.v;
out.b = t;
break;
case 3:
out.r = p;
out.g = q;
out.b = in.v;
break;
case 4:
out.r = t;
out.g = p;
out.b = in.v;
break;
case 5:
default:
out.r = in.v;
out.g = p;
out.b = q;
break;
}
return out;
}
} // namespace Color

View file

@ -7,10 +7,10 @@
Vulcan121::Vulcan121(HIDHelper *helper)
: m_helper(helper) {
for (auto &item : keyMapRow) {
for (auto &item: keyMapRow) {
item = new keys;
}
for (auto &item : keyMapCol) {
for (auto &item: keyMapCol) {
item = new keys;
}
@ -30,7 +30,7 @@ Vulcan121::~Vulcan121() {
// Colors are in blocks of 12 keys (2 columns). Color parts are sorted by color e.g. the red
// values for all 12 keys are first then come the green values etc.
int Vulcan121::sendLedMap(led_map *src, bool deleteMap) {
int Vulcan121::sendLedMap(led_map &src) {
int i, k;
rgba rgb;
unsigned char ledBuffer[448]{};
@ -41,7 +41,7 @@ int Vulcan121::sendLedMap(led_map *src, bool deleteMap) {
ledBuffer[3] = 0xb4;
for (k = 0; k < NUM_KEYS; k++) {
// Prepare Color
auto use = m_fixed[k] ? *(m_fixed[k]) : src ? src->key[k] : m_colorOff;
auto use = m_fixed[k] ? *(m_fixed[k]) : src.key[k];
rgb.a = (int16_t) VUtils::Math::clamp(use.a, 0, 255);
double factor = rgb.a / 255.0;
rgb.r = (int16_t) VUtils::Math::clamp(std::round(use.r * factor), 0, 255);
@ -61,34 +61,26 @@ int Vulcan121::sendLedMap(led_map *src, bool deleteMap) {
memcpy(&buffer[1], &ledBuffer[index], 64);
if (hid_write(m_helper->m_ledDevice, buffer, 65) != 65) {
ERR("Write failed")
if (deleteMap)
delete src;
return 0;
}
}
if (deleteMap)
delete src;
return 1;
}
int Vulcan121::sendToLEDs(rgba rgb) {
auto *map = new led_map();
for (auto &i : map->key) {
auto map = led_map();
for (auto &i: map.key) {
i = rgb;
}
int st = sendLedMap(map, true);
int st = sendLedMap(map);
return st;
}
led_map *Vulcan121::createEmptyLEDMap() {
return new led_map();
}
bool Vulcan121::sendInitSequence() {
LOG("Sending device init sequence...")
unsigned char a[9] = { 0x15, 0x05, 0x07, 0x0a, 0x0b, 0x06, 0x09, 0x0d, 0x13 };
if (!queryCtrlReport(0x0f))
return false;
for (auto i : a) {
for (auto i: a) {
if (!sendCtrlReport(i) || !waitForCtrlDev()) {
return false;
}
@ -327,25 +319,41 @@ const keys *Vulcan121::getRow(int row) {
return keyMapRow[row];
}
void Vulcan121::fadeOutMap(led_map *map, double factor = 0.3) {
for (auto &i : map->key) {
void Vulcan121::fadeOutMap(led_map &map, double factor = 0.3) {
for (auto &i: map.key) {
i.a *= factor;
}
}
// Column FadeOut! Check if previous Col is brighter!
void Vulcan121::fadeOutMapColumn(led_map *map, double factor) {
void Vulcan121::fadeOutMapColumn(led_map &map, double factor) {
for (int i = 0; i < NUM_COLS; ++i) {
// prev check if not 0
auto *columnA = getColumn(i);
int16_t colorB = 0;
if (i > 0 && map->key[columnA->index[0]].a > 0.1) {
if (i > 0 && map.key[columnA->index[0]].a > 0.1) {
auto columnB = getColumn(i - 1);
colorB = map->key[columnB->index[0]].a;
colorB = map.key[columnB->index[0]].a;
}
for (int j = 0; j < columnA->count; ++j) {
auto &colorA = map->key[columnA->index[j]];
auto &colorA = map.key[columnA->index[j]];
colorA.a = colorB != 0 && colorB > colorA.a ? colorB * 1.3 : colorA.a * factor;
}
}
}
void Vulcan121::setColor(led_map &map, rgba color) {
for (auto &i: map.key) {
i.r = color.r;
i.g = color.g;
i.b = color.b;
i.a = color.a;
}
}
void Vulcan121::setColorNoBrightness(led_map &map, rgba color) {
for (auto &i: map.key) {
i.r = color.r;
i.g = color.g;
i.b = color.b;
}
}

View file

@ -0,0 +1,56 @@
#include <VulcanoLE/Scripts/BassHistory.h>
#include <VulcanoLE/Colors/ColorHelper.h>
namespace VIZ {
BassHistory::BassHistory(AudioGrabber *pGrabber, Vulcan121 *pVulcan121) : VIZ(pGrabber, pVulcan121){
for (auto &item : map.key) {
item.a = 0;
}
m_history.resize(keyboardData.num_cols);
}
void BassHistory::onSetup() {
keyboard->sendToLEDs({ 0, 0, 0, 0 });
grabber->requestMode = AudioGrabber::ReqMode::FFT;
}
void BassHistory::onTick(float delta) {
auto data = grabber->fft.getData()->leftChannel;
auto val = 0.0;
for (int i = 1; i < 4; ++i) {
if (data[i] > val) {
val = data[i];
}
}
pushNew(val);
for (int i = 0; i < keyboardData.num_cols; ++i) {
auto col = keyboard->getColumn(i);
for (int j = 0; j < col->count; j++) {
auto& color = map.key[col->index[j]];
color.a = m_history[i];
auto newColor = Color::Generator::rgbFromHSV({
m_history[i] / 255 * 360,
1,
1
});
color.r = int16_t(newColor.r * 255);
color.g = int16_t(newColor.g * 255);
color.b = int16_t(newColor.b * 255);
}
}
keyboard->sendLedMap(map);
}
const char *BassHistory::name() {
return m_name.c_str();
}
void BassHistory::pushNew(double val) {
for (int i = 1; i < m_history.size(); ++i) {
m_history[i - 1] = m_history[i];
}
m_history[m_history.size()-1] = val;
}
}

View file

@ -4,19 +4,46 @@ namespace VIZ {
Loudness::Loudness(AudioGrabber *pGrabber, Vulcan121 *pVulcan121) : VIZ(pGrabber, pVulcan121) {}
void Loudness::onSetup() {
keyboard->sendToLEDs({ 0, 0, 0, 0 });
grabber->requestMode = AudioGrabber::ReqMode::PEAK;
if (isSetup) {
double i = 1;
bool wasFull = false;
for (;;) {
if (frameWidth >= 1.0) frameWidth = 1;
i += wasFull ? -.7 : .5;
if (i >= 100) wasFull = true;
drawSetup(i / 100.0f);
if (wasFull && i >= 100) {
for (int j = 0; j < 5; ++j) {
usleep(100000);
drawSetup(0);
usleep(100000);
drawSetup(1);
}
}
if (wasFull && i <= 0) {
frameWidth = 1;
break;
}
}
usleep(200000);
isSetup = false;
}
grabber->requestMode = AudioGrabber::ReqMode::RMS;
}
void Loudness::onTick(float delta) {
Vulcan121::fadeOutMap(data, tailFactor);
if (isSetup) {
return;
}
stereoSample val = grabber->getLoudness();
val.l = val.l > 1.0f ? 1.0f : val.l;
val.r = val.r > 1.0f ? 1.0f : val.r;
setForChannel(val.l, 0);
setForChannel(val.r, 1);
keyboard->sendLedMap(data, false);
drawFrame(0);
drawFrame(5);
keyboard->sendLedMap(data);
}
const char *Loudness::name() {
@ -27,24 +54,34 @@ namespace VIZ {
// because we have stereo we need to move on the rows
int offset = channel == 0 ? 1 : 3;
int until = channel == 0 ? 3 : 5;
colours[channel].a = value * 128.0;
auto color = colours[channel];
color.a = value * 255.0;
for (int i = offset; i < until; ++i) {
auto row = keyboard->getRow(i);
int to = row->count * value;
for (int j = 0; j < to; ++j) {
for (int j = 0; j < row->count; ++j) {
auto index = row->index[j];
data[0].key[index] = colours[channel];
if (j < to)
data.key[index] = color;
else
data.key[index].a = 0;
}
}
drawFrame(0);
drawFrame(5);
}
void Loudness::drawFrame(int toRow) {
auto row = keyboard->getRow(toRow);
for (int j = 0; j < row->count; ++j) {
for (int j = 0; j < row->count * frameWidth; ++j) {
auto index = row->index[j];
data[0].key[index] = colours[2];
data.key[index] = colours[2];
}
}
void Loudness::drawSetup(float val) {
setForChannel(val, 0);
setForChannel(val, 1);
frameWidth = val;
drawFrame(0);
drawFrame(5);
keyboard->sendLedMap(data);
}
}

View file

@ -12,7 +12,7 @@ namespace VIZ {
}
void PoliceLike::onTick(float delta) {
auto map = Vulcan121::createEmptyLEDMap();
led_map map{};
auto data = grabber->fft.getData()->leftChannel;
auto val = 0.0;
for (int i = 1; i < 3; ++i) {
@ -29,10 +29,10 @@ namespace VIZ {
for (int i = 0; i < max; ++i) {
auto col = keyboard->getColumn(i + colOff);
for (int j = 0; j < col->count; ++j) {
map[0].key[col->index[j]] = colors[colorInd];
map.key[col->index[j]] = colors[colorInd];
}
}
keyboard->sendLedMap(map, true);
keyboard->sendLedMap(map);
}
void PoliceLike::switchOnPeak(double peak) {

View file

@ -3,7 +3,7 @@
#include <VUtils/Logging.h>
#include <VUtils/Math.h>
#define MAX_DELTA 808000
#define MAX_DELTA 0.808
#define MAX_PEAK 170
namespace VIZ {
@ -17,7 +17,6 @@ namespace VIZ {
}
RainbowLine::~RainbowLine() {
delete[] colours;
delete data;
}
void RainbowLine::onSetup() {
currentColumn = 0;
@ -25,18 +24,11 @@ namespace VIZ {
tailFactor = VUtils::Math::clamp(grabber->env->getAsDouble("rainbow_tail_factor", 0.3), 0.0, 0.9);
keyboard->sendToLEDs({ 0, 0, 0, 0 });
grabber->requestMode = AudioGrabber::ReqMode::FFT;
usleep(100000);
}
void RainbowLine::onTick(float delta) {
deltaElapsed += delta;
auto fftData = grabber->fft.getData()->leftChannel;
auto val = 0.0;
for (int i = 1; i < 4; ++i) {
auto avg = fftData[i];
if (avg > val)
val = avg;
}
auto val = grabber->getBass();
val = VUtils::Math::clamp(val, 0, 255);
double avg = deltaMove(val);
if (deltaElapsed >= deltaNeeded) {
@ -49,7 +41,7 @@ namespace VIZ {
moveLine(val, tailFactor);
lastValue = avg;
// we clean up the map self later! :)
keyboard->sendLedMap(data, false);
keyboard->sendLedMap(data);
}
double RainbowLine::deltaMove(double val) {
@ -63,7 +55,7 @@ namespace VIZ {
firstUnder = true;
}
if (avg < 10) {
deltaNeeded = 1000000000;
deltaNeeded = 10;
}
if (decayValue >= 0)
decayValue -= 10;
@ -88,7 +80,7 @@ namespace VIZ {
auto column = keyboard->getColumn(col);
for (int i = 0; i < column->count; ++i) {
auto index = column->index[i];
data[0].key[index] = colours[currentColumn];
data.key[index] = colours[currentColumn];
}
}
}

View file

@ -17,7 +17,6 @@ namespace VIZ {
}
RainbowMap::~RainbowMap() {
delete[] colours;
delete data;
}
void RainbowMap::onSetup() {
currentColumn = 0;
@ -48,7 +47,7 @@ namespace VIZ {
moveRainbow(avg);
lastValue = avg;
// we clean up the map self later! :)
keyboard->sendLedMap(data, false);
keyboard->sendLedMap(data);
}
double RainbowMap::deltaMove(double val) {
@ -101,7 +100,7 @@ namespace VIZ {
}
for (int i = 0; i < column->count; ++i) {
auto index = column->index[i];
data[0].key[index] = colours[colIndex];
data.key[index] = colours[colIndex];
}
}
}

View file

@ -1,83 +1,44 @@
#include <VulcanoLE/Scripts/Random.h>
#include <VUtils/Logging.h>
#include <VUtils/Math.h>
#include <VulcanoLE/Colors/ColorHelper.h>
#include <cmath>
namespace VIZ {
Random::Random(AudioGrabber *pGrabber, Vulcan121 *vulcan) : VIZ(pGrabber, vulcan) {
m_random.setDist(0, keyboardData.num_keys);
}
void Random::onSetup() {
keyboard->sendToLEDs({ 0, 0, 0, 0 });
if (map == nullptr) {
map = Vulcan121::createEmptyLEDMap();
for (auto &color : map->key) {
color.r = 255;
color.b = 155;
color.a = 0;
}
}
Vulcan121::setColor(map, {255,155,0,255});
grabber->requestMode = AudioGrabber::ReqMode::FFT;
usleep(100000);
}
void Random::onTick(float delta) {
deltaElapsed += delta;
auto fftData = grabber->fft.getData()->leftChannel;
auto val = 0.0;
for (int i = 1; i < 4; ++i) {
auto avg = fftData[i];
if (avg > val)
val = avg;
}
val = VUtils::Math::clamp(val, 1,255);
if (deltaElapsed >= deltaNeeded) {
deltaElapsed -= deltaNeeded;
if (emptyTicks && ticks < 10) {
ticks++;
} else {
ticks = 0;
emptyTicks = false;
auto *kRow = keyboard->getRow(row);
columnCount += isReverse ? -1 : 1;
if (!isReverse && columnCount > kRow->count) {
row++;
if (row >= keyboardData.num_rows) {
emptyTicks = true;
isReverse = true;
row = keyboardData.num_rows-1;
} else {
columnCount = 0;
}
} else if (isReverse && columnCount < 0) {
row--;
if (row < 0) {
emptyTicks = true;
isReverse = false;
row = 0;
} else {
columnCount = kRow->count;
void Random::onTick(float /*delta*/) {
double val = grabber->getBass();
double energy = val / 255.0;
uint16_t half = val / 2;
Vulcan121::fadeOutMap(map, (energy * 0.55) + 0.25);
m_angle += energy;
rgb nColor = Color::Generator::rgbFromHSV({ m_angle, 1.0, 1.0 });
if (m_angle > 360) m_angle -= 360;
auto times = std::lround(energy * 4.5);
auto factor = 1.0;
// search for a less < halfPeak
for (int i = 0; i < times; i++) {
for (int j = 0; j < 3; j++) {
auto key = static_cast<int>(m_random.getFast());
auto &item = map.key[key];
if (item.a < half) {
item.r = int16_t(nColor.r * 255);
item.g = int16_t(nColor.g * 255);
item.b = int16_t(nColor.b * 255);
item.a = static_cast<int16_t>(val * factor);
factor -= 0.2;
break;
}
}
}
}
for (auto &color : map->key)
color.a = 0;
for (int i = 0; i <= row; ++i) {
auto *kRow = keyboard->getRow(i);
if (kRow) {
for (int j = 0; j < kRow->count; ++j) {
auto intVal = (int16_t) val;
if (i == row && j > columnCount)
intVal = 0;
map->key[kRow->index[j]].a = intVal;
}
}
}
keyboard->sendLedMap(map, false);
keyboard->sendLedMap(map);
}
const char *Random::name() {
return "Random";
}
Random::~Random() {
delete map;
}
}

View file

@ -0,0 +1,40 @@
#include <VulcanoLE/Colors/ColorHelper.h>
#include <VulcanoLE/Scripts/Spectral.h>
namespace VIZ {
Spectral::Spectral(AudioGrabber *pGrabber, Vulcan121 *pVulcan121)
: VIZ(pGrabber, pVulcan121) {
double ri = 0;
for (int i = 1; i < keyboardData.num_rows; ++i) {
auto *row = keyboard->getRow(i);
double r = ri / row->count;
for (int j = 0; j < row->count; j++) {
map.key[row->index[j]] = Color::Generator::rgbFromRatio(r, 255);
}
ri++;
}
}
void Spectral::onSetup() {
keyboard->sendToLEDs({0, 0, 0, 0});
grabber->requestMode = AudioGrabber::ReqMode::FFT;
}
void Spectral::onTick(float delta) {
auto *data = grabber->fft.getData();
auto *channel = data->leftChannel;
for (int i = 0; i < keyboardData.num_cols; ++i) {
auto *col = keyboard->getColumn(i);
auto ratio = (channel[i + 1] / 128.0 * -1 + 1) * keyboardData.num_rows;
for (int j = 0; j < col->count; j++) {
map.key[col->index[j]].a = j < ratio ? 0 : channel[j];
}
}
keyboard->sendLedMap(map);
}
const char *Spectral::name() { return m_name.c_str(); }
} // namespace VIZ

View file

@ -1,43 +1,40 @@
#include <VUtils/Logging.h>
#include <VUtils/Math.h>
#include <VulcanoLE/Colors/ColorHelper.h>
#include <VulcanoLE/Scripts/Spectrum.h>
namespace VIZ {
Spectrum::Spectrum(AudioGrabber *pGrabber, Vulcan121 *pVulcan121) : VIZ(pGrabber, pVulcan121) {}
Spectrum::Spectrum(AudioGrabber *pGrabber, Vulcan121 *pVulcan121)
: VIZ(pGrabber, pVulcan121) {}
void Spectrum::onSetup() {
keyboard->sendToLEDs({ 0, 0, 0, 0 });
void Spectrum::onSetup() {
keyboard->sendToLEDs({0, 0, 0, 0});
grabber->requestMode = AudioGrabber::ReqMode::FFT;
usleep(100000);
}
void Spectrum::onTick(float delta) {
auto map = Vulcan121::createEmptyLEDMap();
auto data = grabber->fft.getData()->leftChannel;
// find largest bass ~43hz (44100 / FFT_SIZE) range
}
void Spectrum::onTick(float delta) {
led_map map{};
auto *data = grabber->fft.getData()->leftChannel;
auto val = 0.0;
for (int i = 1; i < 4; ++i) {
for (int i = 0; i < 3; ++i) {
if (data[i] > val) {
val = data[i];
}
}
double newVal = (val + lastVal) / 2.0;
lastVal = val;
int split = keyboardData.num_keys / 3;
int x = 0;
int colorInd = 0;
colors[0].a = newVal;
colors[1].a = newVal;
colors[2].a = newVal;
double normalized = val / 255.0;
if (m_angle > 360.0)
m_angle -= 360.0;
m_angle += (normalized * normalized * normalized) * 5.0;
rgb nColor =
Color::Generator::rgbFromHSV({m_angle, 1.0, normalized * normalized});
int16_t r = nColor.r * 255.0;
int16_t g = nColor.g * 255.0;
int16_t b = nColor.b * 255.0;
rgba color = {r, g, b, 255};
for (int key = 0; key < keyboardData.num_keys; ++key) {
map[0].key[key] = colors[colorInd];
x++;
if (x > split) {
colorInd++;
x = 0;
}
}
keyboard->sendLedMap(map, true);
}
const char *Spectrum::name() {
return m_name.c_str();
map.key[key] = color;
}
keyboard->sendLedMap(map);
}
const char *Spectrum::name() { return m_name.c_str(); }
} // namespace VIZ

View file

@ -0,0 +1,44 @@
#include <VUtils/Random.h>
#include <VulcanoLE/Colors/ColorHelper.h>
#include <VulcanoLE/Scripts/Strobo.h>
namespace VIZ {
Strobo::Strobo(AudioGrabber *pGrabber, Vulcan121 *pVulcan121)
: VIZ(pGrabber, pVulcan121) {}
void Strobo::onSetup() {
keyboard->sendToLEDs({0, 0, 0, 0});
grabber->requestMode = AudioGrabber::ReqMode::FFT;
int16_t r = (int16_t)grabber->env->getAsInt("strobo.color.r", 25);
int16_t g = (int16_t)grabber->env->getAsInt("strobo.color.g", 0);
int16_t b = (int16_t)grabber->env->getAsInt("strobo.color.b", 150);
m_color = {r, g, b, 255};
m_isStanding = false;
}
void Strobo::onTick(float delta) {
led_map map{};
auto bass = grabber->getBass();
auto val = bass / 255.0;
m_isStanding = bass < 5;
if (m_isStanding) {
m_color.a += 5;
if (m_color.a > 255) {
m_color.a = 255;
}
} else {
m_sinPoint += val * val;
if (m_sinPoint > 360)
m_sinPoint -= 360;
auto v = (std::sin(m_sinPoint) + 1) * 0.5;
m_color.a = (v * v) * 255;
}
for (int key = 0; key < keyboardData.num_keys; ++key) {
map.key[key] = m_color;
}
keyboard->sendLedMap(map);
}
const char *Strobo::name() { return m_name.c_str(); }
} // namespace VIZ

View file

@ -0,0 +1,41 @@
#include <VulcanoLE/Scripts/TheUknown.h>
#include <VUtils/SimplexNoise.h>
namespace VIZ {
TheUnknown::TheUnknown(AudioGrabber *pGrabber, Vulcan121 *vulcan) : VIZ(pGrabber, vulcan) {
m_random.setDist(0, 128);
for (int i = 0; i < NUM_KEYS; i++) {
m_keyHeightMap[i] = std::abs(SimplexNoise::noise(i + 1.0f)) * 0.1;
m_keyOffset[i] = m_random.getFast();
}
m_random.setDist(0.005, 0.01);
}
void TheUnknown::onSetup() {
keyboard->sendToLEDs({ 0, 0, 0, 0 });
Vulcan121::setColor(map, { 202, 35, 13, 255 });
grabber->requestMode = AudioGrabber::ReqMode::PEAK;
}
void TheUnknown::onTick(float delta) {
auto loudness = grabber->getLoudness();
auto factor = (((loudness.r + loudness.l) / 2.0) * 0.9) + 0.05;
for (size_t i = 0; i < keyboardData.num_keys; i++) {
auto &color = map.key[i];
auto noise = SimplexNoise::noise(m_keyOffset[i]) * factor;
noise = std::abs(noise) + 0.02;
auto newAlpha = std::clamp((noise + m_keyHeightMap[i]) * 255, 0.0, 255.0);
color.a = (color.a + newAlpha) / 2;
auto offset = std::sin(m_angle) * m_random.getFast();
m_keyOffset[i] += (delta * (1.5 * factor)) + offset;
m_angle += 0.0005;
if (m_keyOffset[i] > 20000000)
m_keyOffset[i] = 0.0;
if (m_angle > 1.0)
m_angle -= 1;
}
keyboard->sendLedMap(map);
}
const char *TheUnknown::name() {
return "TheUnknown";
}
}

View file

@ -6,6 +6,10 @@
#include <VulcanoLE/Scripts/RainbowLine.h>
#include <VulcanoLE/Scripts/Random.h>
#include <VulcanoLE/Scripts/RainbowMap.h>
#include <VulcanoLE/Scripts/Spectral.h>
#include <VulcanoLE/Scripts/BassHistory.h>
#include <VulcanoLE/Scripts/TheUknown.h>
#include <VulcanoLE/Scripts/Strobo.h>
namespace VIZ {
void VisPlugins::init(HIDHelper *hidHelper, AudioGrabber *audioGrabber) {
@ -17,6 +21,10 @@ namespace VIZ {
viz[3] = new RainbowLine(grabber, keyboard);
viz[4] = new Random(grabber, keyboard);
viz[5] = new RainbowMap(grabber, keyboard);
viz[6] = new Spectral(grabber, keyboard);
viz[7] = new BassHistory(grabber, keyboard);
viz[8] = new TheUnknown(grabber, keyboard);
viz[9] = new Strobo(grabber, keyboard);
currentVis = viz[mode];
}
@ -33,8 +41,8 @@ namespace VIZ {
void VisPlugins::onTick() {
std::lock_guard<std::mutex> lockGuard(guard);
auto stop = std::chrono::high_resolution_clock::now();
auto delta = std::chrono::duration_cast<micro>(stop - start).count();
currentVis->onTick(delta);
auto delta = std::chrono::duration_cast<micro>(stop - start).count() / 1000000.0;
currentVis->onTick((float) delta);
frames++;
#ifdef DEBUG
auto fps = std::chrono::duration_cast<ms>(stop - frameStart).count();
@ -44,7 +52,6 @@ namespace VIZ {
frames = 0;
}
#endif
// DBG("Time Needed %f ms", delta / 1000)
start = stop;
}